@inproceedings{yong-torrent-2020-semi,
title = "Semi-supervised Deep Embedded Clustering with Anomaly Detection for Semantic Frame Induction",
author = "Yong, Zheng Xin and
Torrent, Tiago Timponi",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.431",
pages = "3509--3519",
abstract = "Although FrameNet is recognized as one of the most fine-grained lexical databases, its coverage of lexical units is still limited. To tackle this issue, we propose a two-step frame induction process: for a set of lexical units not yet present in Berkeley FrameNet data release 1.7, first remove those that cannot fit into any existing semantic frame in FrameNet; then, assign the remaining lexical units to their correct frames. We also present the Semi-supervised Deep Embedded Clustering with Anomaly Detection (SDEC-AD) model{---}an algorithm that maps high-dimensional contextualized vector representations of lexical units to a low-dimensional latent space for better frame prediction and uses reconstruction error to identify lexical units that cannot evoke frames in FrameNet. SDEC-AD outperforms the state-of-the-art methods in both steps of the frame induction process. Empirical results also show that definitions provide contextual information for representing and characterizing the frame membership of lexical units.",
language = "English",
ISBN = "979-10-95546-34-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yong-torrent-2020-semi">
<titleInfo>
<title>Semi-supervised Deep Embedded Clustering with Anomaly Detection for Semantic Frame Induction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="given">Xin</namePart>
<namePart type="family">Yong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tiago</namePart>
<namePart type="given">Timponi</namePart>
<namePart type="family">Torrent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>Although FrameNet is recognized as one of the most fine-grained lexical databases, its coverage of lexical units is still limited. To tackle this issue, we propose a two-step frame induction process: for a set of lexical units not yet present in Berkeley FrameNet data release 1.7, first remove those that cannot fit into any existing semantic frame in FrameNet; then, assign the remaining lexical units to their correct frames. We also present the Semi-supervised Deep Embedded Clustering with Anomaly Detection (SDEC-AD) model—an algorithm that maps high-dimensional contextualized vector representations of lexical units to a low-dimensional latent space for better frame prediction and uses reconstruction error to identify lexical units that cannot evoke frames in FrameNet. SDEC-AD outperforms the state-of-the-art methods in both steps of the frame induction process. Empirical results also show that definitions provide contextual information for representing and characterizing the frame membership of lexical units.</abstract>
<identifier type="citekey">yong-torrent-2020-semi</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.431</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>3509</start>
<end>3519</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semi-supervised Deep Embedded Clustering with Anomaly Detection for Semantic Frame Induction
%A Yong, Zheng Xin
%A Torrent, Tiago Timponi
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G English
%F yong-torrent-2020-semi
%X Although FrameNet is recognized as one of the most fine-grained lexical databases, its coverage of lexical units is still limited. To tackle this issue, we propose a two-step frame induction process: for a set of lexical units not yet present in Berkeley FrameNet data release 1.7, first remove those that cannot fit into any existing semantic frame in FrameNet; then, assign the remaining lexical units to their correct frames. We also present the Semi-supervised Deep Embedded Clustering with Anomaly Detection (SDEC-AD) model—an algorithm that maps high-dimensional contextualized vector representations of lexical units to a low-dimensional latent space for better frame prediction and uses reconstruction error to identify lexical units that cannot evoke frames in FrameNet. SDEC-AD outperforms the state-of-the-art methods in both steps of the frame induction process. Empirical results also show that definitions provide contextual information for representing and characterizing the frame membership of lexical units.
%U https://aclanthology.org/2020.lrec-1.431
%P 3509-3519
Markdown (Informal)
[Semi-supervised Deep Embedded Clustering with Anomaly Detection for Semantic Frame Induction](https://aclanthology.org/2020.lrec-1.431) (Yong & Torrent, LREC 2020)
ACL