@inproceedings{kovacs-etal-2020-better,
title = "Better Together: Modern Methods Plus Traditional Thinking in {NP} Alignment",
author = "Kov{\'a}cs, {\'A}d{\'a}m and
{\'A}cs, Judit and
Kornai, Andras and
Recski, G{\'a}bor",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.448",
pages = "3635--3639",
abstract = "We study a typical intermediary task to Machine Translation, the alignment of NPs in the bitext. After arguing that the task remains relevant even in an end-to-end paradigm, we present simple, dictionary- and word vector-based baselines and a BERT-based system. Our results make clear that even state of the art systems relying on the best end-to-end methods can be improved by bringing in old-fashioned methods such as stopword removal, lemmatization, and dictionaries",
language = "English",
ISBN = "979-10-95546-34-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kovacs-etal-2020-better">
<titleInfo>
<title>Better Together: Modern Methods Plus Traditional Thinking in NP Alignment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ádám</namePart>
<namePart type="family">Kovács</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Judit</namePart>
<namePart type="family">Ács</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andras</namePart>
<namePart type="family">Kornai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gábor</namePart>
<namePart type="family">Recski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>We study a typical intermediary task to Machine Translation, the alignment of NPs in the bitext. After arguing that the task remains relevant even in an end-to-end paradigm, we present simple, dictionary- and word vector-based baselines and a BERT-based system. Our results make clear that even state of the art systems relying on the best end-to-end methods can be improved by bringing in old-fashioned methods such as stopword removal, lemmatization, and dictionaries</abstract>
<identifier type="citekey">kovacs-etal-2020-better</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.448</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>3635</start>
<end>3639</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Better Together: Modern Methods Plus Traditional Thinking in NP Alignment
%A Kovács, Ádám
%A Ács, Judit
%A Kornai, Andras
%A Recski, Gábor
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G English
%F kovacs-etal-2020-better
%X We study a typical intermediary task to Machine Translation, the alignment of NPs in the bitext. After arguing that the task remains relevant even in an end-to-end paradigm, we present simple, dictionary- and word vector-based baselines and a BERT-based system. Our results make clear that even state of the art systems relying on the best end-to-end methods can be improved by bringing in old-fashioned methods such as stopword removal, lemmatization, and dictionaries
%U https://aclanthology.org/2020.lrec-1.448
%P 3635-3639
Markdown (Informal)
[Better Together: Modern Methods Plus Traditional Thinking in NP Alignment](https://aclanthology.org/2020.lrec-1.448) (Kovács et al., LREC 2020)
ACL