Reconstructing NER Corpora: a Case Study on Bulgarian
Iva Marinova, Laska Laskova, Petya Osenova, Kiril Simov, Alexander Popov
Abstract
The paper reports on the usage of deep learning methods for improving a Named Entity Recognition (NER) training corpus and for predicting and annotating new types in a test corpus. We show how the annotations in a type-based corpus of named entities (NE) were populated as occurrences within it, thus ensuring density of the training information. A deep learning model was adopted for discovering inconsistencies in the initial annotation and for learning new NE types. The evaluation results get improved after data curation, randomization and deduplication.- Anthology ID:
- 2020.lrec-1.571
- Volume:
- Proceedings of the Twelfth Language Resources and Evaluation Conference
- Month:
- May
- Year:
- 2020
- Address:
- Marseille, France
- Editors:
- Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis
- Venue:
- LREC
- SIG:
- Publisher:
- European Language Resources Association
- Note:
- Pages:
- 4647–4652
- Language:
- English
- URL:
- https://aclanthology.org/2020.lrec-1.571
- DOI:
- Bibkey:
- Cite (ACL):
- Iva Marinova, Laska Laskova, Petya Osenova, Kiril Simov, and Alexander Popov. 2020. Reconstructing NER Corpora: a Case Study on Bulgarian. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 4647–4652, Marseille, France. European Language Resources Association.
- Cite (Informal):
- Reconstructing NER Corpora: a Case Study on Bulgarian (Marinova et al., LREC 2020)
- Copy Citation:
- PDF:
- https://aclanthology.org/2020.lrec-1.571.pdf
Export citation
@inproceedings{marinova-etal-2020-reconstructing, title = "Reconstructing {NER} Corpora: a Case Study on {B}ulgarian", author = "Marinova, Iva and Laskova, Laska and Osenova, Petya and Simov, Kiril and Popov, Alexander", editor = "Calzolari, Nicoletta and B{\'e}chet, Fr{\'e}d{\'e}ric and Blache, Philippe and Choukri, Khalid and Cieri, Christopher and Declerck, Thierry and Goggi, Sara and Isahara, Hitoshi and Maegaard, Bente and Mariani, Joseph and Mazo, H{\'e}l{\`e}ne and Moreno, Asuncion and Odijk, Jan and Piperidis, Stelios", booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference", month = may, year = "2020", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2020.lrec-1.571", pages = "4647--4652", abstract = "The paper reports on the usage of deep learning methods for improving a Named Entity Recognition (NER) training corpus and for predicting and annotating new types in a test corpus. We show how the annotations in a type-based corpus of named entities (NE) were populated as occurrences within it, thus ensuring density of the training information. A deep learning model was adopted for discovering inconsistencies in the initial annotation and for learning new NE types. The evaluation results get improved after data curation, randomization and deduplication.", language = "English", ISBN = "979-10-95546-34-4", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="marinova-etal-2020-reconstructing"> <titleInfo> <title>Reconstructing NER Corpora: a Case Study on Bulgarian</title> </titleInfo> <name type="personal"> <namePart type="given">Iva</namePart> <namePart type="family">Marinova</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Laska</namePart> <namePart type="family">Laskova</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Petya</namePart> <namePart type="family">Osenova</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kiril</namePart> <namePart type="family">Simov</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexander</namePart> <namePart type="family">Popov</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2020-05</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <language> <languageTerm type="text">English</languageTerm> <languageTerm type="code" authority="iso639-2b">eng</languageTerm> </language> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title> </titleInfo> <name type="personal"> <namePart type="given">Nicoletta</namePart> <namePart type="family">Calzolari</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Frédéric</namePart> <namePart type="family">Béchet</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philippe</namePart> <namePart type="family">Blache</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Khalid</namePart> <namePart type="family">Choukri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christopher</namePart> <namePart type="family">Cieri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Thierry</namePart> <namePart type="family">Declerck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sara</namePart> <namePart type="family">Goggi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hitoshi</namePart> <namePart type="family">Isahara</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Bente</namePart> <namePart type="family">Maegaard</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Joseph</namePart> <namePart type="family">Mariani</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hélène</namePart> <namePart type="family">Mazo</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Asuncion</namePart> <namePart type="family">Moreno</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jan</namePart> <namePart type="family">Odijk</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Stelios</namePart> <namePart type="family">Piperidis</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>European Language Resources Association</publisher> <place> <placeTerm type="text">Marseille, France</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> <identifier type="isbn">979-10-95546-34-4</identifier> </relatedItem> <abstract>The paper reports on the usage of deep learning methods for improving a Named Entity Recognition (NER) training corpus and for predicting and annotating new types in a test corpus. We show how the annotations in a type-based corpus of named entities (NE) were populated as occurrences within it, thus ensuring density of the training information. A deep learning model was adopted for discovering inconsistencies in the initial annotation and for learning new NE types. The evaluation results get improved after data curation, randomization and deduplication.</abstract> <identifier type="citekey">marinova-etal-2020-reconstructing</identifier> <location> <url>https://aclanthology.org/2020.lrec-1.571</url> </location> <part> <date>2020-05</date> <extent unit="page"> <start>4647</start> <end>4652</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Reconstructing NER Corpora: a Case Study on Bulgarian %A Marinova, Iva %A Laskova, Laska %A Osenova, Petya %A Simov, Kiril %A Popov, Alexander %Y Calzolari, Nicoletta %Y Béchet, Frédéric %Y Blache, Philippe %Y Choukri, Khalid %Y Cieri, Christopher %Y Declerck, Thierry %Y Goggi, Sara %Y Isahara, Hitoshi %Y Maegaard, Bente %Y Mariani, Joseph %Y Mazo, Hélène %Y Moreno, Asuncion %Y Odijk, Jan %Y Piperidis, Stelios %S Proceedings of the Twelfth Language Resources and Evaluation Conference %D 2020 %8 May %I European Language Resources Association %C Marseille, France %@ 979-10-95546-34-4 %G English %F marinova-etal-2020-reconstructing %X The paper reports on the usage of deep learning methods for improving a Named Entity Recognition (NER) training corpus and for predicting and annotating new types in a test corpus. We show how the annotations in a type-based corpus of named entities (NE) were populated as occurrences within it, thus ensuring density of the training information. A deep learning model was adopted for discovering inconsistencies in the initial annotation and for learning new NE types. The evaluation results get improved after data curation, randomization and deduplication. %U https://aclanthology.org/2020.lrec-1.571 %P 4647-4652
Markdown (Informal)
[Reconstructing NER Corpora: a Case Study on Bulgarian](https://aclanthology.org/2020.lrec-1.571) (Marinova et al., LREC 2020)
- Reconstructing NER Corpora: a Case Study on Bulgarian (Marinova et al., LREC 2020)
ACL
- Iva Marinova, Laska Laskova, Petya Osenova, Kiril Simov, and Alexander Popov. 2020. Reconstructing NER Corpora: a Case Study on Bulgarian. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 4647–4652, Marseille, France. European Language Resources Association.