Towards a Gold Standard for Evaluating Danish Word Embeddings

Nina Schneidermann, Rasmus Hvingelby, Bolette Pedersen


Abstract
This paper presents the process of compiling a model-agnostic similarity goal standard for evaluating Danish word embeddings based on human judgments made by 42 native speakers of Danish. Word embeddings resemble semantic similarity solely by distribution (meaning that word vectors do not reflect relatedness as differing from similarity), and we argue that this generalization poses a problem in most intrinsic evaluation scenarios. In order to be able to evaluate on both dimensions, our human-generated dataset is therefore designed to reflect the distinction between relatedness and similarity. The goal standard is applied for evaluating the “goodness” of six existing word embedding models for Danish, and it is discussed how a relatively low correlation can be explained by the fact that semantic similarity is substantially more challenging to model than relatedness, and that there seems to be a need for future human judgments to measure similarity in full context and along more than a single spectrum.
Anthology ID:
2020.lrec-1.585
Volume:
Proceedings of the 12th Language Resources and Evaluation Conference
Month:
May
Year:
2020
Address:
Marseille, France
Venue:
LREC
SIG:
Publisher:
European Language Resources Association
Note:
Pages:
4754–4763
Language:
English
URL:
https://aclanthology.org/2020.lrec-1.585
DOI:
Bibkey:
Cite (ACL):
Nina Schneidermann, Rasmus Hvingelby, and Bolette Pedersen. 2020. Towards a Gold Standard for Evaluating Danish Word Embeddings. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 4754–4763, Marseille, France. European Language Resources Association.
Cite (Informal):
Towards a Gold Standard for Evaluating Danish Word Embeddings (Schneidermann et al., LREC 2020)
Copy Citation:
PDF:
https://aclanthology.org/2020.lrec-1.585.pdf