@inproceedings{bou-etal-2020-ontology,
title = "Ontology-Style Relation Annotation: A Case Study",
author = "Bou, Savong and
Suzuki, Naoki and
Miwa, Makoto and
Sasaki, Yutaka",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.599",
pages = "4867--4876",
abstract = "This paper proposes an Ontology-Style Relation (OSR) annotation approach. In conventional Relation Extraction (RE) datasets, relations are annotated as links between entity mentions. In contrast, in our OSR annotation, a relation is annotated as a relation mention (i.e., not a link but a node) and domain and range links are annotated from the relation mention to its argument entity mentions. We expect the following benefits: (1) the relation annotations can be easily converted to Resource Description Framework (RDF) triples to populate an Ontology, (2) some part of conventional RE tasks can be tackled as Named Entity Recognition (NER) tasks. The relation classes are limited to several RDF properties such as domain, range, and subClassOf, and (3) OSR annotations can be clear documentations of Ontology contents. As a case study, we converted an in-house corpus of Japanese traffic rules in conventional annotations into the OSR annotations and built a novel OSR-RoR (Rules of the Road) corpus. The inter-annotator agreements of the conversion were 85-87{\%}. We evaluated the performance of neural NER and RE tools on the conventional and OSR annotations. The experimental results showed that the OSR annotations make the RE task easier while introducing slight complexity into the NER task.",
language = "English",
ISBN = "979-10-95546-34-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bou-etal-2020-ontology">
<titleInfo>
<title>Ontology-Style Relation Annotation: A Case Study</title>
</titleInfo>
<name type="personal">
<namePart type="given">Savong</namePart>
<namePart type="family">Bou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoki</namePart>
<namePart type="family">Suzuki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Miwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yutaka</namePart>
<namePart type="family">Sasaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>This paper proposes an Ontology-Style Relation (OSR) annotation approach. In conventional Relation Extraction (RE) datasets, relations are annotated as links between entity mentions. In contrast, in our OSR annotation, a relation is annotated as a relation mention (i.e., not a link but a node) and domain and range links are annotated from the relation mention to its argument entity mentions. We expect the following benefits: (1) the relation annotations can be easily converted to Resource Description Framework (RDF) triples to populate an Ontology, (2) some part of conventional RE tasks can be tackled as Named Entity Recognition (NER) tasks. The relation classes are limited to several RDF properties such as domain, range, and subClassOf, and (3) OSR annotations can be clear documentations of Ontology contents. As a case study, we converted an in-house corpus of Japanese traffic rules in conventional annotations into the OSR annotations and built a novel OSR-RoR (Rules of the Road) corpus. The inter-annotator agreements of the conversion were 85-87%. We evaluated the performance of neural NER and RE tools on the conventional and OSR annotations. The experimental results showed that the OSR annotations make the RE task easier while introducing slight complexity into the NER task.</abstract>
<identifier type="citekey">bou-etal-2020-ontology</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.599</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>4867</start>
<end>4876</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Ontology-Style Relation Annotation: A Case Study
%A Bou, Savong
%A Suzuki, Naoki
%A Miwa, Makoto
%A Sasaki, Yutaka
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G English
%F bou-etal-2020-ontology
%X This paper proposes an Ontology-Style Relation (OSR) annotation approach. In conventional Relation Extraction (RE) datasets, relations are annotated as links between entity mentions. In contrast, in our OSR annotation, a relation is annotated as a relation mention (i.e., not a link but a node) and domain and range links are annotated from the relation mention to its argument entity mentions. We expect the following benefits: (1) the relation annotations can be easily converted to Resource Description Framework (RDF) triples to populate an Ontology, (2) some part of conventional RE tasks can be tackled as Named Entity Recognition (NER) tasks. The relation classes are limited to several RDF properties such as domain, range, and subClassOf, and (3) OSR annotations can be clear documentations of Ontology contents. As a case study, we converted an in-house corpus of Japanese traffic rules in conventional annotations into the OSR annotations and built a novel OSR-RoR (Rules of the Road) corpus. The inter-annotator agreements of the conversion were 85-87%. We evaluated the performance of neural NER and RE tools on the conventional and OSR annotations. The experimental results showed that the OSR annotations make the RE task easier while introducing slight complexity into the NER task.
%U https://aclanthology.org/2020.lrec-1.599
%P 4867-4876
Markdown (Informal)
[Ontology-Style Relation Annotation: A Case Study](https://aclanthology.org/2020.lrec-1.599) (Bou et al., LREC 2020)
ACL
- Savong Bou, Naoki Suzuki, Makoto Miwa, and Yutaka Sasaki. 2020. Ontology-Style Relation Annotation: A Case Study. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 4867–4876, Marseille, France. European Language Resources Association.