@inproceedings{schulder-etal-2020-enhancing,
title = "Enhancing a Lexicon of Polarity Shifters through the Supervised Classification of Shifting Directions",
author = "Schulder, Marc and
Wiegand, Michael and
Ruppenhofer, Josef",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.616",
pages = "5010--5016",
abstract = "The sentiment polarity of an expression (whether it is perceived as positive, negative or neutral) can be influenced by a number of phenomena, foremost among them negation. Apart from closed-class negation words like {``}no{''}, {``}not{''} or {``}without{''}, negation can also be caused by so-called polarity shifters. These are content words, such as verbs, nouns or adjectives, that shift polarities in their opposite direction, e.g. {``}abandoned{''} in {``}abandoned hope{''} or {``}alleviate{''} in {``}alleviate pain{''}. Many polarity shifters can affect both positive and negative polar expressions, shifting them towards the opposing polarity. However, other shifters are restricted to a single shifting direction. {``}Recoup{''} shifts negative to positive in {``}recoup your losses{''}, but does not affect the positive polarity of {``}fortune{''} in {``}recoup a fortune{''}. Existing polarity shifter lexica only specify whether a word can, in general, cause shifting, but they do not specify when this is limited to one shifting direction. To address this issue we introduce a supervised classifier that determines the shifting direction of shifters. This classifier uses both resource-driven features, such as WordNet relations, and data-driven features like in-context polarity conflicts. Using this classifier we enhance the largest available polarity shifter lexicon.",
language = "English",
ISBN = "979-10-95546-34-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schulder-etal-2020-enhancing">
<titleInfo>
<title>Enhancing a Lexicon of Polarity Shifters through the Supervised Classification of Shifting Directions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marc</namePart>
<namePart type="family">Schulder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Wiegand</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">Ruppenhofer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>The sentiment polarity of an expression (whether it is perceived as positive, negative or neutral) can be influenced by a number of phenomena, foremost among them negation. Apart from closed-class negation words like “no”, “not” or “without”, negation can also be caused by so-called polarity shifters. These are content words, such as verbs, nouns or adjectives, that shift polarities in their opposite direction, e.g. “abandoned” in “abandoned hope” or “alleviate” in “alleviate pain”. Many polarity shifters can affect both positive and negative polar expressions, shifting them towards the opposing polarity. However, other shifters are restricted to a single shifting direction. “Recoup” shifts negative to positive in “recoup your losses”, but does not affect the positive polarity of “fortune” in “recoup a fortune”. Existing polarity shifter lexica only specify whether a word can, in general, cause shifting, but they do not specify when this is limited to one shifting direction. To address this issue we introduce a supervised classifier that determines the shifting direction of shifters. This classifier uses both resource-driven features, such as WordNet relations, and data-driven features like in-context polarity conflicts. Using this classifier we enhance the largest available polarity shifter lexicon.</abstract>
<identifier type="citekey">schulder-etal-2020-enhancing</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.616</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>5010</start>
<end>5016</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing a Lexicon of Polarity Shifters through the Supervised Classification of Shifting Directions
%A Schulder, Marc
%A Wiegand, Michael
%A Ruppenhofer, Josef
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G English
%F schulder-etal-2020-enhancing
%X The sentiment polarity of an expression (whether it is perceived as positive, negative or neutral) can be influenced by a number of phenomena, foremost among them negation. Apart from closed-class negation words like “no”, “not” or “without”, negation can also be caused by so-called polarity shifters. These are content words, such as verbs, nouns or adjectives, that shift polarities in their opposite direction, e.g. “abandoned” in “abandoned hope” or “alleviate” in “alleviate pain”. Many polarity shifters can affect both positive and negative polar expressions, shifting them towards the opposing polarity. However, other shifters are restricted to a single shifting direction. “Recoup” shifts negative to positive in “recoup your losses”, but does not affect the positive polarity of “fortune” in “recoup a fortune”. Existing polarity shifter lexica only specify whether a word can, in general, cause shifting, but they do not specify when this is limited to one shifting direction. To address this issue we introduce a supervised classifier that determines the shifting direction of shifters. This classifier uses both resource-driven features, such as WordNet relations, and data-driven features like in-context polarity conflicts. Using this classifier we enhance the largest available polarity shifter lexicon.
%U https://aclanthology.org/2020.lrec-1.616
%P 5010-5016
Markdown (Informal)
[Enhancing a Lexicon of Polarity Shifters through the Supervised Classification of Shifting Directions](https://aclanthology.org/2020.lrec-1.616) (Schulder et al., LREC 2020)
ACL