@inproceedings{yamakata-etal-2020-english,
title = "{E}nglish Recipe Flow Graph Corpus",
author = "Yamakata, Yoko and
Mori, Shinsuke and
Carroll, John",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.638",
pages = "5187--5194",
abstract = "We present an annotated corpus of English cooking recipe procedures, and describe and evaluate computational methods for learning these annotations. The corpus consists of 300 recipes written by members of the public, which we have annotated with domain-specific linguistic and semantic structure. Each recipe is annotated with (1) {`}recipe named entities{'} (r-NEs) specific to the recipe domain, and (2) a flow graph representing in detail the sequencing of steps, and interactions between cooking tools, food ingredients and the products of intermediate steps. For these two kinds of annotations, inter-annotator agreement ranges from 82.3 to 90.5 F1, indicating that our annotation scheme is appropriate and consistent. We experiment with producing these annotations automatically. For r-NE tagging we train a deep neural network NER tool; to compute flow graphs we train a dependency-style parsing procedure which we apply to the entire sequence of r-NEs in a recipe. In evaluations, our systems achieve 71.1 to 87.5 F1, demonstrating that our annotation scheme is learnable.",
language = "English",
ISBN = "979-10-95546-34-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yamakata-etal-2020-english">
<titleInfo>
<title>English Recipe Flow Graph Corpus</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoko</namePart>
<namePart type="family">Yamakata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shinsuke</namePart>
<namePart type="family">Mori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Carroll</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>We present an annotated corpus of English cooking recipe procedures, and describe and evaluate computational methods for learning these annotations. The corpus consists of 300 recipes written by members of the public, which we have annotated with domain-specific linguistic and semantic structure. Each recipe is annotated with (1) ‘recipe named entities’ (r-NEs) specific to the recipe domain, and (2) a flow graph representing in detail the sequencing of steps, and interactions between cooking tools, food ingredients and the products of intermediate steps. For these two kinds of annotations, inter-annotator agreement ranges from 82.3 to 90.5 F1, indicating that our annotation scheme is appropriate and consistent. We experiment with producing these annotations automatically. For r-NE tagging we train a deep neural network NER tool; to compute flow graphs we train a dependency-style parsing procedure which we apply to the entire sequence of r-NEs in a recipe. In evaluations, our systems achieve 71.1 to 87.5 F1, demonstrating that our annotation scheme is learnable.</abstract>
<identifier type="citekey">yamakata-etal-2020-english</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.638</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>5187</start>
<end>5194</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T English Recipe Flow Graph Corpus
%A Yamakata, Yoko
%A Mori, Shinsuke
%A Carroll, John
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G English
%F yamakata-etal-2020-english
%X We present an annotated corpus of English cooking recipe procedures, and describe and evaluate computational methods for learning these annotations. The corpus consists of 300 recipes written by members of the public, which we have annotated with domain-specific linguistic and semantic structure. Each recipe is annotated with (1) ‘recipe named entities’ (r-NEs) specific to the recipe domain, and (2) a flow graph representing in detail the sequencing of steps, and interactions between cooking tools, food ingredients and the products of intermediate steps. For these two kinds of annotations, inter-annotator agreement ranges from 82.3 to 90.5 F1, indicating that our annotation scheme is appropriate and consistent. We experiment with producing these annotations automatically. For r-NE tagging we train a deep neural network NER tool; to compute flow graphs we train a dependency-style parsing procedure which we apply to the entire sequence of r-NEs in a recipe. In evaluations, our systems achieve 71.1 to 87.5 F1, demonstrating that our annotation scheme is learnable.
%U https://aclanthology.org/2020.lrec-1.638
%P 5187-5194
Markdown (Informal)
[English Recipe Flow Graph Corpus](https://aclanthology.org/2020.lrec-1.638) (Yamakata et al., LREC 2020)
ACL
- Yoko Yamakata, Shinsuke Mori, and John Carroll. 2020. English Recipe Flow Graph Corpus. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 5187–5194, Marseille, France. European Language Resources Association.