@inproceedings{hildebrand-etal-2020-recognizing,
title = "Recognizing Sentence-level Logical Document Structures with the Help of Context-free Grammars",
author = "Hildebrand, Jonathan and
Hemati, Wahed and
Mehler, Alexander",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.650",
pages = "5282--5290",
abstract = "Current sentence boundary detectors split documents into sequentially ordered sentences by detecting their beginnings and ends. Sentences, however, are more deeply structured even on this side of constituent and dependency structure: they can consist of a main sentence and several subordinate clauses as well as further segments (e.g. inserts in parentheses); they can even recursively embed whole sentences and then contain multiple sentence beginnings and ends. In this paper, we introduce a tool that segments sentences into tree structures to detect this type of recursive structure. To this end, we retrain different constituency parsers with the help of modified training data to transform them into sentence segmenters. With these segmenters, documents are mapped to sequences of sentence-related {``}logical document structures{''}. The resulting segmenters aim to improve downstream tasks by providing additional structural information. In this context, we experiment with German dependency parsing. We show that for certain sentence categories, which can be determined automatically, improvements in German dependency parsing can be achieved using our segmenter for preprocessing. The assumption suggests that improvements in other languages and tasks can be achieved.",
language = "English",
ISBN = "979-10-95546-34-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hildebrand-etal-2020-recognizing">
<titleInfo>
<title>Recognizing Sentence-level Logical Document Structures with the Help of Context-free Grammars</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Hildebrand</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wahed</namePart>
<namePart type="family">Hemati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Mehler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>Current sentence boundary detectors split documents into sequentially ordered sentences by detecting their beginnings and ends. Sentences, however, are more deeply structured even on this side of constituent and dependency structure: they can consist of a main sentence and several subordinate clauses as well as further segments (e.g. inserts in parentheses); they can even recursively embed whole sentences and then contain multiple sentence beginnings and ends. In this paper, we introduce a tool that segments sentences into tree structures to detect this type of recursive structure. To this end, we retrain different constituency parsers with the help of modified training data to transform them into sentence segmenters. With these segmenters, documents are mapped to sequences of sentence-related “logical document structures”. The resulting segmenters aim to improve downstream tasks by providing additional structural information. In this context, we experiment with German dependency parsing. We show that for certain sentence categories, which can be determined automatically, improvements in German dependency parsing can be achieved using our segmenter for preprocessing. The assumption suggests that improvements in other languages and tasks can be achieved.</abstract>
<identifier type="citekey">hildebrand-etal-2020-recognizing</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.650</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>5282</start>
<end>5290</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Recognizing Sentence-level Logical Document Structures with the Help of Context-free Grammars
%A Hildebrand, Jonathan
%A Hemati, Wahed
%A Mehler, Alexander
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G English
%F hildebrand-etal-2020-recognizing
%X Current sentence boundary detectors split documents into sequentially ordered sentences by detecting their beginnings and ends. Sentences, however, are more deeply structured even on this side of constituent and dependency structure: they can consist of a main sentence and several subordinate clauses as well as further segments (e.g. inserts in parentheses); they can even recursively embed whole sentences and then contain multiple sentence beginnings and ends. In this paper, we introduce a tool that segments sentences into tree structures to detect this type of recursive structure. To this end, we retrain different constituency parsers with the help of modified training data to transform them into sentence segmenters. With these segmenters, documents are mapped to sequences of sentence-related “logical document structures”. The resulting segmenters aim to improve downstream tasks by providing additional structural information. In this context, we experiment with German dependency parsing. We show that for certain sentence categories, which can be determined automatically, improvements in German dependency parsing can be achieved using our segmenter for preprocessing. The assumption suggests that improvements in other languages and tasks can be achieved.
%U https://aclanthology.org/2020.lrec-1.650
%P 5282-5290
Markdown (Informal)
[Recognizing Sentence-level Logical Document Structures with the Help of Context-free Grammars](https://aclanthology.org/2020.lrec-1.650) (Hildebrand et al., LREC 2020)
ACL