@inproceedings{zarcone-etal-2020-pate,
title = "{PATE}: A Corpus of Temporal Expressions for the In-car Voice Assistant Domain",
author = "Zarcone, Alessandra and
Alam, Touhidul and
Kolagar, Zahra",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.66",
pages = "523--530",
abstract = "The recognition and automatic annotation of temporal expressions (e.g. {``}Add an event for tomorrow evening at eight to my calendar{''}) is a key module for AI voice assistants, in order to allow them to interact with apps (for example, a calendar app). However, in the NLP literature, research on temporal expressions has focused mostly on data from the news, from the clinical domain, and from social media. The voice assistant domain is very different than the typical domains that have been the focus of work on temporal expression identification, thus requiring a dedicated data collection. We present a crowdsourcing method for eliciting natural-language commands containing temporal expressions for an AI voice assistant, by using pictures and scenario descriptions. We annotated the elicited commands (480) as well as the commands in the Snips dataset following the TimeML/TIMEX3 annotation guidelines, reaching a total of 1188 annotated commands. The commands can be later used to train the NLU components of an AI voice assistant.",
language = "English",
ISBN = "979-10-95546-34-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zarcone-etal-2020-pate">
<titleInfo>
<title>PATE: A Corpus of Temporal Expressions for the In-car Voice Assistant Domain</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alessandra</namePart>
<namePart type="family">Zarcone</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Touhidul</namePart>
<namePart type="family">Alam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zahra</namePart>
<namePart type="family">Kolagar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>The recognition and automatic annotation of temporal expressions (e.g. “Add an event for tomorrow evening at eight to my calendar”) is a key module for AI voice assistants, in order to allow them to interact with apps (for example, a calendar app). However, in the NLP literature, research on temporal expressions has focused mostly on data from the news, from the clinical domain, and from social media. The voice assistant domain is very different than the typical domains that have been the focus of work on temporal expression identification, thus requiring a dedicated data collection. We present a crowdsourcing method for eliciting natural-language commands containing temporal expressions for an AI voice assistant, by using pictures and scenario descriptions. We annotated the elicited commands (480) as well as the commands in the Snips dataset following the TimeML/TIMEX3 annotation guidelines, reaching a total of 1188 annotated commands. The commands can be later used to train the NLU components of an AI voice assistant.</abstract>
<identifier type="citekey">zarcone-etal-2020-pate</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.66</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>523</start>
<end>530</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PATE: A Corpus of Temporal Expressions for the In-car Voice Assistant Domain
%A Zarcone, Alessandra
%A Alam, Touhidul
%A Kolagar, Zahra
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G English
%F zarcone-etal-2020-pate
%X The recognition and automatic annotation of temporal expressions (e.g. “Add an event for tomorrow evening at eight to my calendar”) is a key module for AI voice assistants, in order to allow them to interact with apps (for example, a calendar app). However, in the NLP literature, research on temporal expressions has focused mostly on data from the news, from the clinical domain, and from social media. The voice assistant domain is very different than the typical domains that have been the focus of work on temporal expression identification, thus requiring a dedicated data collection. We present a crowdsourcing method for eliciting natural-language commands containing temporal expressions for an AI voice assistant, by using pictures and scenario descriptions. We annotated the elicited commands (480) as well as the commands in the Snips dataset following the TimeML/TIMEX3 annotation guidelines, reaching a total of 1188 annotated commands. The commands can be later used to train the NLU components of an AI voice assistant.
%U https://aclanthology.org/2020.lrec-1.66
%P 523-530
Markdown (Informal)
[PATE: A Corpus of Temporal Expressions for the In-car Voice Assistant Domain](https://aclanthology.org/2020.lrec-1.66) (Zarcone et al., LREC 2020)
ACL