Abstract
In this paper, we present KGvec2go, a Web API for accessing and consuming graph embeddings in a light-weight fashion in downstream applications. Currently, we serve pre-trained embeddings for four knowledge graphs. We introduce the service and its usage, and we show further that the trained models have semantic value by evaluating them on multiple semantic benchmarks. The evaluation also reveals that the combination of multiple models can lead to a better outcome than the best individual model.- Anthology ID:
- 2020.lrec-1.692
- Volume:
- Proceedings of the Twelfth Language Resources and Evaluation Conference
- Month:
- May
- Year:
- 2020
- Address:
- Marseille, France
- Editors:
- Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis
- Venue:
- LREC
- SIG:
- Publisher:
- European Language Resources Association
- Note:
- Pages:
- 5641–5647
- Language:
- English
- URL:
- https://aclanthology.org/2020.lrec-1.692
- DOI:
- Bibkey:
- Cite (ACL):
- Jan Portisch, Michael Hladik, and Heiko Paulheim. 2020. KGvec2go – Knowledge Graph Embeddings as a Service. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 5641–5647, Marseille, France. European Language Resources Association.
- Cite (Informal):
- KGvec2go – Knowledge Graph Embeddings as a Service (Portisch et al., LREC 2020)
- Copy Citation:
- PDF:
- https://aclanthology.org/2020.lrec-1.692.pdf
Export citation
@inproceedings{portisch-etal-2020-kgvec2go, title = "{KG}vec2go {--} Knowledge Graph Embeddings as a Service", author = "Portisch, Jan and Hladik, Michael and Paulheim, Heiko", editor = "Calzolari, Nicoletta and B{\'e}chet, Fr{\'e}d{\'e}ric and Blache, Philippe and Choukri, Khalid and Cieri, Christopher and Declerck, Thierry and Goggi, Sara and Isahara, Hitoshi and Maegaard, Bente and Mariani, Joseph and Mazo, H{\'e}l{\`e}ne and Moreno, Asuncion and Odijk, Jan and Piperidis, Stelios", booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference", month = may, year = "2020", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2020.lrec-1.692", pages = "5641--5647", abstract = "In this paper, we present KGvec2go, a Web API for accessing and consuming graph embeddings in a light-weight fashion in downstream applications. Currently, we serve pre-trained embeddings for four knowledge graphs. We introduce the service and its usage, and we show further that the trained models have semantic value by evaluating them on multiple semantic benchmarks. The evaluation also reveals that the combination of multiple models can lead to a better outcome than the best individual model.", language = "English", ISBN = "979-10-95546-34-4", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="portisch-etal-2020-kgvec2go"> <titleInfo> <title>KGvec2go – Knowledge Graph Embeddings as a Service</title> </titleInfo> <name type="personal"> <namePart type="given">Jan</namePart> <namePart type="family">Portisch</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Michael</namePart> <namePart type="family">Hladik</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Heiko</namePart> <namePart type="family">Paulheim</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2020-05</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <language> <languageTerm type="text">English</languageTerm> <languageTerm type="code" authority="iso639-2b">eng</languageTerm> </language> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title> </titleInfo> <name type="personal"> <namePart type="given">Nicoletta</namePart> <namePart type="family">Calzolari</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Frédéric</namePart> <namePart type="family">Béchet</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philippe</namePart> <namePart type="family">Blache</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Khalid</namePart> <namePart type="family">Choukri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christopher</namePart> <namePart type="family">Cieri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Thierry</namePart> <namePart type="family">Declerck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sara</namePart> <namePart type="family">Goggi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hitoshi</namePart> <namePart type="family">Isahara</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Bente</namePart> <namePart type="family">Maegaard</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Joseph</namePart> <namePart type="family">Mariani</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hélène</namePart> <namePart type="family">Mazo</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Asuncion</namePart> <namePart type="family">Moreno</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jan</namePart> <namePart type="family">Odijk</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Stelios</namePart> <namePart type="family">Piperidis</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>European Language Resources Association</publisher> <place> <placeTerm type="text">Marseille, France</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> <identifier type="isbn">979-10-95546-34-4</identifier> </relatedItem> <abstract>In this paper, we present KGvec2go, a Web API for accessing and consuming graph embeddings in a light-weight fashion in downstream applications. Currently, we serve pre-trained embeddings for four knowledge graphs. We introduce the service and its usage, and we show further that the trained models have semantic value by evaluating them on multiple semantic benchmarks. The evaluation also reveals that the combination of multiple models can lead to a better outcome than the best individual model.</abstract> <identifier type="citekey">portisch-etal-2020-kgvec2go</identifier> <location> <url>https://aclanthology.org/2020.lrec-1.692</url> </location> <part> <date>2020-05</date> <extent unit="page"> <start>5641</start> <end>5647</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T KGvec2go – Knowledge Graph Embeddings as a Service %A Portisch, Jan %A Hladik, Michael %A Paulheim, Heiko %Y Calzolari, Nicoletta %Y Béchet, Frédéric %Y Blache, Philippe %Y Choukri, Khalid %Y Cieri, Christopher %Y Declerck, Thierry %Y Goggi, Sara %Y Isahara, Hitoshi %Y Maegaard, Bente %Y Mariani, Joseph %Y Mazo, Hélène %Y Moreno, Asuncion %Y Odijk, Jan %Y Piperidis, Stelios %S Proceedings of the Twelfth Language Resources and Evaluation Conference %D 2020 %8 May %I European Language Resources Association %C Marseille, France %@ 979-10-95546-34-4 %G English %F portisch-etal-2020-kgvec2go %X In this paper, we present KGvec2go, a Web API for accessing and consuming graph embeddings in a light-weight fashion in downstream applications. Currently, we serve pre-trained embeddings for four knowledge graphs. We introduce the service and its usage, and we show further that the trained models have semantic value by evaluating them on multiple semantic benchmarks. The evaluation also reveals that the combination of multiple models can lead to a better outcome than the best individual model. %U https://aclanthology.org/2020.lrec-1.692 %P 5641-5647
Markdown (Informal)
[KGvec2go – Knowledge Graph Embeddings as a Service](https://aclanthology.org/2020.lrec-1.692) (Portisch et al., LREC 2020)
- KGvec2go – Knowledge Graph Embeddings as a Service (Portisch et al., LREC 2020)
ACL
- Jan Portisch, Michael Hladik, and Heiko Paulheim. 2020. KGvec2go – Knowledge Graph Embeddings as a Service. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 5641–5647, Marseille, France. European Language Resources Association.