@inproceedings{naert-etal-2020-lsf,
title = "{LSF}-{ANIMAL}: A Motion Capture Corpus in {F}rench {S}ign {L}anguage Designed for the Animation of Signing Avatars",
author = "Naert, Lucie and
Larboulette, Caroline and
Gibet, Sylvie",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.736",
pages = "6008--6017",
abstract = "Signing avatars allow deaf people to access information in their preferred language using an interactive visualization of the sign language spatio-temporal content. However, avatars are often procedurally animated, resulting in robotic and unnatural movements, which are therefore rejected by the community for which they are intended. To overcome this lack of authenticity, solutions in which the avatar is animated from motion capture data are promising. Yet, the initial data set drastically limits the range of signs that the avatar can produce. Therefore, it can be interesting to enrich the initial corpus with new content by editing the captured motions. For this purpose, we collected the LSF-ANIMAL corpus, a French Sign Language (LSF) corpus composed of captured isolated signs and full sentences that can be used both to study LSF features and to generate new signs and utterances. This paper presents the precise definition and content of this corpus, technical considerations relative to the motion capture process (including the marker set definition), the post-processing steps required to obtain data in a standard motion format and the annotation scheme used to label the data. The quality of the corpus with respect to intelligibility, accuracy and realism is perceptually evaluated by 41 participants including native LSF signers.",
language = "English",
ISBN = "979-10-95546-34-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="naert-etal-2020-lsf">
<titleInfo>
<title>LSF-ANIMAL: A Motion Capture Corpus in French Sign Language Designed for the Animation of Signing Avatars</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lucie</namePart>
<namePart type="family">Naert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Caroline</namePart>
<namePart type="family">Larboulette</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sylvie</namePart>
<namePart type="family">Gibet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>Signing avatars allow deaf people to access information in their preferred language using an interactive visualization of the sign language spatio-temporal content. However, avatars are often procedurally animated, resulting in robotic and unnatural movements, which are therefore rejected by the community for which they are intended. To overcome this lack of authenticity, solutions in which the avatar is animated from motion capture data are promising. Yet, the initial data set drastically limits the range of signs that the avatar can produce. Therefore, it can be interesting to enrich the initial corpus with new content by editing the captured motions. For this purpose, we collected the LSF-ANIMAL corpus, a French Sign Language (LSF) corpus composed of captured isolated signs and full sentences that can be used both to study LSF features and to generate new signs and utterances. This paper presents the precise definition and content of this corpus, technical considerations relative to the motion capture process (including the marker set definition), the post-processing steps required to obtain data in a standard motion format and the annotation scheme used to label the data. The quality of the corpus with respect to intelligibility, accuracy and realism is perceptually evaluated by 41 participants including native LSF signers.</abstract>
<identifier type="citekey">naert-etal-2020-lsf</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.736</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>6008</start>
<end>6017</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LSF-ANIMAL: A Motion Capture Corpus in French Sign Language Designed for the Animation of Signing Avatars
%A Naert, Lucie
%A Larboulette, Caroline
%A Gibet, Sylvie
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G English
%F naert-etal-2020-lsf
%X Signing avatars allow deaf people to access information in their preferred language using an interactive visualization of the sign language spatio-temporal content. However, avatars are often procedurally animated, resulting in robotic and unnatural movements, which are therefore rejected by the community for which they are intended. To overcome this lack of authenticity, solutions in which the avatar is animated from motion capture data are promising. Yet, the initial data set drastically limits the range of signs that the avatar can produce. Therefore, it can be interesting to enrich the initial corpus with new content by editing the captured motions. For this purpose, we collected the LSF-ANIMAL corpus, a French Sign Language (LSF) corpus composed of captured isolated signs and full sentences that can be used both to study LSF features and to generate new signs and utterances. This paper presents the precise definition and content of this corpus, technical considerations relative to the motion capture process (including the marker set definition), the post-processing steps required to obtain data in a standard motion format and the annotation scheme used to label the data. The quality of the corpus with respect to intelligibility, accuracy and realism is perceptually evaluated by 41 participants including native LSF signers.
%U https://aclanthology.org/2020.lrec-1.736
%P 6008-6017
Markdown (Informal)
[LSF-ANIMAL: A Motion Capture Corpus in French Sign Language Designed for the Animation of Signing Avatars](https://aclanthology.org/2020.lrec-1.736) (Naert et al., LREC 2020)
ACL