@inproceedings{de-coster-etal-2020-sign,
title = "Sign Language Recognition with Transformer Networks",
author = "De Coster, Mathieu and
Van Herreweghe, Mieke and
Dambre, Joni",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.737",
pages = "6018--6024",
abstract = "Sign languages are complex languages. Research into them is ongoing, supported by large video corpora of which only small parts are annotated. Sign language recognition can be used to speed up the annotation process of these corpora, in order to aid research into sign languages and sign language recognition. Previous research has approached sign language recognition in various ways, using feature extraction techniques or end-to-end deep learning. In this work, we apply a combination of feature extraction using OpenPose for human keypoint estimation and end-to-end feature learning with Convolutional Neural Networks. The proven multi-head attention mechanism used in transformers is applied to recognize isolated signs in the Flemish Sign Language corpus. Our proposed method significantly outperforms the previous state of the art of sign language recognition on the Flemish Sign Language corpus: we obtain an accuracy of 74.7{\%} on a vocabulary of 100 classes. Our results will be implemented as a suggestion system for sign language corpus annotation.",
language = "English",
ISBN = "979-10-95546-34-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="de-coster-etal-2020-sign">
<titleInfo>
<title>Sign Language Recognition with Transformer Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mathieu</namePart>
<namePart type="family">De Coster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mieke</namePart>
<namePart type="family">Van Herreweghe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joni</namePart>
<namePart type="family">Dambre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>Sign languages are complex languages. Research into them is ongoing, supported by large video corpora of which only small parts are annotated. Sign language recognition can be used to speed up the annotation process of these corpora, in order to aid research into sign languages and sign language recognition. Previous research has approached sign language recognition in various ways, using feature extraction techniques or end-to-end deep learning. In this work, we apply a combination of feature extraction using OpenPose for human keypoint estimation and end-to-end feature learning with Convolutional Neural Networks. The proven multi-head attention mechanism used in transformers is applied to recognize isolated signs in the Flemish Sign Language corpus. Our proposed method significantly outperforms the previous state of the art of sign language recognition on the Flemish Sign Language corpus: we obtain an accuracy of 74.7% on a vocabulary of 100 classes. Our results will be implemented as a suggestion system for sign language corpus annotation.</abstract>
<identifier type="citekey">de-coster-etal-2020-sign</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.737</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>6018</start>
<end>6024</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sign Language Recognition with Transformer Networks
%A De Coster, Mathieu
%A Van Herreweghe, Mieke
%A Dambre, Joni
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G English
%F de-coster-etal-2020-sign
%X Sign languages are complex languages. Research into them is ongoing, supported by large video corpora of which only small parts are annotated. Sign language recognition can be used to speed up the annotation process of these corpora, in order to aid research into sign languages and sign language recognition. Previous research has approached sign language recognition in various ways, using feature extraction techniques or end-to-end deep learning. In this work, we apply a combination of feature extraction using OpenPose for human keypoint estimation and end-to-end feature learning with Convolutional Neural Networks. The proven multi-head attention mechanism used in transformers is applied to recognize isolated signs in the Flemish Sign Language corpus. Our proposed method significantly outperforms the previous state of the art of sign language recognition on the Flemish Sign Language corpus: we obtain an accuracy of 74.7% on a vocabulary of 100 classes. Our results will be implemented as a suggestion system for sign language corpus annotation.
%U https://aclanthology.org/2020.lrec-1.737
%P 6018-6024
Markdown (Informal)
[Sign Language Recognition with Transformer Networks](https://aclanthology.org/2020.lrec-1.737) (De Coster et al., LREC 2020)
ACL
- Mathieu De Coster, Mieke Van Herreweghe, and Joni Dambre. 2020. Sign Language Recognition with Transformer Networks. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 6018–6024, Marseille, France. European Language Resources Association.