
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 6035–6039
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

6035

HamNoSyS2SiGML: Translating HamNoSys Into SiGML

Carolina Neves, Luisa Coheur, Hugo Nicolau
Instituto Superior Técnico, Universidade de Lisboa/INESC-ID

Lisboa, Portugal
{name.surname}@tecnico.ulisboa.pt

Abstract
Sign Languages are visual languages and the primary means of communication used by Deaf people. However, the majority of the
information available online is presented through written form. Hence, it is not of easy access to the Deaf community. Avatars have
gained an increase of interest due to their potential in automatically generating signs from text. Synthetic animation of conversational
agents can be achieved through the use of notation systems. HamNoSys is one of these systems, which describes movements of the
body through symbols. SiGML is an XML-compliant machine-readable format that enables avatars to animate HamNoSys symbols.
However, there are no freely available open-source libraries that allow the conversion from HamNoSys to SiGML. In this paper,
we present our open-source and cross-platform tool that performs such conversion. This system represents a crucial intermediate
step in the broader pipeline of animating signing avatars. Finally, we describe two cases studies to illustrate different applications of our tool.

Keywords:HamNoSys, SiGML, translation, signing avatar

1. Introduction
Sign languages are visual gesture languages performed
through the use of hands, facial, and body expressions. Ac-
cording to the World Federation of the Deaf1 there are over
300 sign languages and 70 million deaf people using them
around the world. Sign languages are highly structured
languages with linguistic rules distinct from their spoken
counterparts without a standard written form. However, the
vast majority of information available online is provided in
spoken or written language, which excludes sign languages.
Many communication barriers exist for sign language users
(Kushalnagar, 2019), and signing avatars (computer anima-
tions of humans) have the potential to break down these
barriers for Deaf people who prefer sign language or have
lower literacy in written language (Kushalnagar, 2019). For
instance, these avatars could automatically replace the dis-
played text with sign language animations.
Current pipelines typically generate signing avatars based
on a symbolic representation previously prepared by a hu-
man annotator of signed content (Al-khazraji et al., 2018;
Efthimiou et al., 2019; Elliott et al., 2000; Adamo-Villani
and Wilbur, 2015; Zwitserlood et al., 2004); that is, avatars
are built based on annotated datasets that relate gestural
information with linguistic information.
While multiple notation systems have been proposed (Costa
and Dimuro, 2003; Elliott et al., 2000; Hanke, 2004), there
is no universal standard. Annotations are often in gloss, a
form of transliteration where written words in spoken lan-
guages are used to represent signs. The Hamburg Notation
System for Sign Languages (HamNoSys) (Hanke, 2004) is
one of the most popular, designed to capture detailed human
movements and body positioning for computer modelling.
The notation system uses symbols to describe parameters
of signs, such as hand shapes, hand orientations, move-
ments, and non-manual components. Although HamNoSys
symbols are readable by humans, notation systems typically

1 http://wfdeaf.org/our-work/

require intermediary XML-based markup language repre-
sentations that are computationally compatible and read-
able (Costa and Dimuro, 2003; Zwitserlood et al., 2004).
For instance, Signing Gesture Markup Language (SiGML)
(Zwitserlood et al., 2004) is compatible with HamNoSys.
Multiple sign language avatar projects have been using
HamNoSys and SiGML. For instance, eSIGN’s (Essen-
tial Sign Language Information on Government Networks)
(Zwitserlood et al., 2004) avatar uses both notation systems
to synthesize signing animations. The avatar will receive
the SiGML and will then display the requested signs. More
recently, SiS-Builder (Efthimiou et al., 2019) is a sign lan-
guage tool that provides a signer friendly graphical user in-
terface. Users can create SiGML scripts either by entering
HamNoSys strings of already stored signs or by creating
HamNoSys lemmas online, up to a limit of four lemmas.
Users may also add non-manual components to the sign.
Afterwards, the respective SiGML script is generated and
stored. However, the previously mentioned tools are not
open source.
Although signing avatars often leverage HamNoSys annota-
tions, to best of our knowledge, there are no freely available
open-source libraries that allow the conversion to SiGML,
which leads to duplication of work and inconsistencies in
the conversion process. Moreover, it limits the potential of
HamNoSys to be extended, mainly when dealing with un-
foreseen hand signs and non-manual components, resulting
in custom-made notation "silos" that are never shared or
standardized.
In this paper, we present an open-source library that enables
real-time conversion from HamNoSys to SiGML2. The li-
brary is language independent, deals with any number of
glosses and symbols, and can be included in popular 3D
development platforms (e.g. Unity). The contributions of
this paper are: 1) a freely available open-source tool that
converts HamNoSys to SiGML, 2) the possibility to extend

2 https://github.com/carolNeves/
HamNoSys2SiGML

http://wfdeaf.org/our-work/
https://github.com/carolNeves/HamNoSys2SiGML
https://github.com/carolNeves/HamNoSys2SiGML


6036

the notation and its SiGML, 3) a parser capable of convert-
ing the annotations from ELAN3 to the correct SiGML, and
4) combine our tool with development platforms, such as
Unity4. We further illustrate the library’s capabilities with
two case studies.
The paper starts with an overview of HamNoSys and its
XML-notation, SiGML, followed by a description of our
library. Next, we illustrate how the community can leverage
it. Finally, we present the conclusions withdrawn from our
work as well as future work.

2. From HamNoSys to SiGML
2.1. HamNoSys
HamNoSys is an alphabetic system describing signs mostly
on a phonetic level. The following description of the system
is based on (Hanke, 2004). This notation system is a com-
bination of iconic and easily recognizable symbols which
cover the parameters of hand shape, hand configuration, lo-
cation and movement. HamNoSys can be internationally
used since it does not rely on conventions that differ from
country to country (Hanke, 2004; Kaur and Kumar, 2016).

2.1.1. Hand shapes
The description of hand shape is composed of basic hand
forms and thumb combinations. These can be combined
with diacritic signs for thumb positions and bending. Ad-
ditional description concerning the fingers involved or the
form of individual fingers can be specified. In Figure 1 we
can see a simple hand shape for the Portuguese word “bolo”
(“cake” in English).

2.1.2. Hand orientations
The description of the hand orientation is composed of two
components: extended finger and palm orientation. The
former provides information regarding the direction of an
extended finger related to the signer’s body (signer’s view,
birds’ view, and view from the right). The later is relative
with the former. For a given extended finger, it indicates
an orientation of the palm around the shaft of the hand. A
practical example is provided in Figure 1.

2.1.3. Hand locations
The locations of the hand can also be split into two compo-
nents: The first provides information of the hand location
in respect to other body parts, as the second determines the
distance of the hand to this location. If the later is missing, a
“natural” distance is assumed. In case both components are
omitted, a neutral space is assumed. Such space is located
in front of the upper part of the body. As shown in Figure
1, both the hand location and hand proximity are provided.

2.1.4. Movements
Movements can be distinguished between straight, curved
and zigzag lines, circles and similar forms. These can either
be performed sequentially or co-temporally. Also, repeti-
tions of movements can be specified. In the case of two-
handed signs, it is possible to differentiate the actions for
each hand.

3 https://tla.mpi.nl/tools/tla-tools/elan/
4 https://unity.com/

2.1.5. Two-handed signs
HamNoSys also supports two-handed signs. These can
present symmetric or asymmetric configurations. A sym-
metric marker is used to specify how both hands should
behave.

2.1.6. Non-manual components
Non-manual components are all those regarding body and
face without considering hands, such as head, eyebrows,
eyes, cheeks, mouth, torso and shoulder movements. The
description of these components in HamNoSys is rather
limited. For each movement, it is possible to specify an
articulator to replace the hand. An articulator allows appro-
priate descriptions for shoulder shrugging, head movements
but not necessarily facial expressions or mouth movements.

2.2. SiGML
HamNoSys provides readable symbols to the human eye, but
in terms of computer processing, it is not as straightforward.
ViSiCAST (Elliott et al., 2000) was the pilot project in this
field. This project focused on the definition of the XML-
compliant representation of HamNoSys symbols, SiGML.
SiGML is a machine readable input of HamNoSys (Zwit-
serlood et al., 2004), which describes the gestures. This
XML framework can be used to drive avatars if the signing
expressed in HamNoSys is properly converted to it. Figure
1 also illustrates how the word “BOLO” is coded in SiGML
(right column).

Figure 1: Representation of the Portuguese SL sign for
“BOLO” (cake in English) in HamNoSys (left) and its cod-
ification in SiGML (right).

3. HamNoSys2SiGML tool
HamNoSys2SiGML is an automation system designed to
receive a set of HamNoSys codes with the optional addition
of its own glosses, in said order, and return a SiGML. Our
system represents an intermediate step in the pipeline of
synthetic animation. Even though several tools were previ-
ously developed, to the best of our knowledge, none of them
is freely available. The only requirement to use our tool is
to have Python 3.7.3+ installed in the user’s device.

3.1. Architecture
The architecture of the system consistsmainly of threemajor
steps and three minor steps, presented in Figure 2.
The recognized input of our program can be distinguished
into two scenarios: a set of HamNoSys symbols or a set

https://tla.mpi.nl/tools/tla-tools/elan/
https://unity.com/


6037

Figure 2: Architecture of the system.

of HamNoSys symbols and their corresponding glosses. In
both scenarios, the input must be presented within quotes,
as shown in Figure 3. For the second scenario, both the
number of HamNoSys blocks and glosses must coincide;
otherwise, the input will not be supported by the program.
An example is given in Figure 3 inwhich the system receives
two sets of HamNoSys symbols and two glosses, “Bom dia”
(“Good morning” in English) in Portuguese SL (PSL). 5

Figure 3: HamNoSys2SiGML receives the HamNoSys
symbols in PSL (first input value) and two glosses “bom
dia” (“good morning”) (second input value).

3.2. Processing the data
The system will read the input and evaluate which scenario
is applied by counting the numbers of arguments presented
in quotes. If the input contains two sets of information in
quotes, the program will assume it is receiving both Ham-
NoSys symbols and their glosses. In contrast, if the input
only contains one set of information in quotes, it will assume

5 The HamNoSys symbols can not be displayed in the command
line since they are not machine-readable.

it is just receiving HamNoSys symbols. The program has
no limit over the maximum number of HamNoSys symbols
possible to receive, ergo, neither it does over the number of
glosses.
The HamNoSys symbols received initially cannot be di-
rectly read; for this reason, they must be converted into
machine-readable content. These symbols are available as
an Unicode font with the characters mapped into the Private
Use area of Unicode. The Private Use area of Unicode is a
range of code points that are intentionally left undefined so
that third parties can define their characters without conflict-
ing with already existing Unicode characters. In this case,
we useHamNoSys symbols. Each symbol is associatedwith
a code of exactly four characters. The correct association
between both the symbol and its corresponding code is per-
formed by the system in step “Convert HamNoSys symbols
to their Unicode codes” (Figure 2). We provide an example
in Figure 4, in which the values in the column Symbols are
the input received by the program, and its respective code
is correspondent to the values in the column Codes.

3.3. SiGML generation
The system has access to approximately 210 HamNoSys
symbols and their corresponding SiGML tags, provided by
the authors of SiS-Builder (Efthimiou et al., 2019). Once
all HamNoSys codes received are converted to their respec-
tive set of Unicode characters, it is possible to match them
with those accessed by the program (“Matching the Ham-
NoSys codes received with the available ones”, Figure 2).
Afterwards, the correct SiGML tag is accessed, which cor-
responds to the final step “Matching the HamNoSys codes
with correspondent SiGML tags” in Figure 2. In Figure 4
the SiGML tags are present in the column most to the left
(HamNoSys token).
Once all the associations are performed, a SiGML file is
written to the command line (Figure 3) designated as the
last step of the architecture in Figure 2. In case only the
HamNoSys symbols are provided, the output will only differ
regarding the glosses information (gloss = "BOM"), which
will be non-existent.

Figure 4: Correspondence between SiGML tags, Ham-
NoSys Unicode codes and HamNoSys symbols, in the re-
spective order.

3.4. Extending the notation
The presented tool can be further extended by the user. Tak-
ing into consideration the currently limited facial expres-
sions codes available in HamNoSys, a promising possibility
resides in the extension of the notation system for this type
of content.



6038

As previously mentioned in section 3.3., the system has
access to approximately 210 HamNoSys codes and their
corresponding SiGML tags, which is saved in a text file
(specified in the README file). With the aim of improving
the content of this document, the user simply has to add
entries to this file. Each entry must have the SiGML tags
created and their respective HamNoSys Unicode codes.

4. Leveraging HamNoSys2SiGML
Our tool brings value to a range of different fields, such as
linguists and developers. We describe two cases studies to
illustrate the possible usages of HamNoSys2SiGML. The
installation of Python 3.7.3+ is required for both.

4.1. First Case Study: ELAN
ELAN6 is one of the most popular annotation tools,
distributed with free licenses, which allow their non-
commercial use. Linguists widely use the tool in the process
of annotating content from videos in sign languages. ELAN
provides as output an annotation file which contains all the
information contained in its different tiers.
For our case study, the output was exported as an HTML
with two tiers (Glosses and HamNoSys). In order to read
the input from this HTML, a parser was developed. In case
ELAN original file has different tiers, this parser requires
adjustments. While reading the data from the HTML, the
conversion from HamNoSys symbols to their codes was
performed. This parser returns the HamNoSys Unicode
codes followed by their glosses. Nevertheless, this input
is also accepted by our tool. Therefore, no changes are
required to the original code. The returned SiGML for this
HTML can be used to animate an avatar from CoffeeScript
WebGL ARP Signing Avatars7.
By combining ELAN’s functionalities with our tool’s, we
provide linguists with a solution for animating an online
avatar fed by their annotations.

4.2. Second Case Study: ELAN with Unity
Unity8 is one of the most popular game engines available,
packed with tools that allow for powerful, yet simple, 2D
and 3D game development, with free versions unrestricted.
By integrating the HTML exported from ELANwith Unity,
developers can animate a state-of-the-art avatar of choice.
For such purpose, the scripts should be within the Unity’s
project folder “/Assets/PythonScripts/”. It is worth men-
tioning that this code will only work inWindows. Firstly the
python installationwill be verified byUnity. Afterwards, the
platform will start new processes for each script as well as
for the parser and conversion tool (HamNoSys to SiGML).
These processes will open Windows’ command line in the
background and run the scripts. The SiGMLfiles generated,
by default, will be saved to “/Assets/SiGML_Files/”.
This combination is advantageous for diversified teams of
linguists and developers which aspire to develop a complete
pipeline in the synthetic animation of an avatar.

6 https://tla.mpi.nl/tools/tla-tools/elan/
7 http://vhg.cmp.uea.ac.uk/tech/jas/vhg2019/
cwa/TwoAvServer.html

8 https://unity.com/

5. Conclusions and Future Scope
Information currently available online is provided in written
form, which is not of easy access to Deaf people. The ideal
method for displaying information to the Deaf community
would be through their sign language. An accessible ap-
proach to create content in SL is through the transcription
of signs into HamNoSys, followed by the proper animation
by an avatar.
Our tool allows for the translation from a set of Ham-
NoSys symbols, and optionally their corresponding glosses,
to SiGML, without the dependency of external systems.
We describe two cases studies illustrating different scenarios
of use for our tool, providing an overview of the range of
possibilities in which our system can be leveraged.
The described tool can be used as an essential interme-
diate step in the broader pipeline of producing content in
SL. Further complementary work to this tool can be added
to complete this pipeline. Namely the development of a
connection between the SiGML produced and the avatar to
animate.

6. Acknowledgements
This work was partially supported by Fundação para a Ciên-
cia e a Tecnologia through grants UIDB/50021/2020 and
PTDC/LLT-LIN/29887/2017. This project is part of the
project Corpus & Avatar da Língua Gestual Portuguesa.
We are grateful to the authors of SiS-Builder (Efthimiou
et al., 2019) for sharing the document with the association
between HamNoSys codes and its SiGML tags.

7. Bibliographical References
Adamo-Villani, N. and Wilbur, R. B. (2015). ASL-Pro:
American Sign Language Animation with Prosodic El-
ements. In Margherita Antona et al., editors, Universal
Access in Human-Computer Interaction. Access to In-
teraction, pages 307–318, Cham. Springer International
Publishing.

Al-khazraji, S., Berke, L., Kafle, S., Yeung, P., and Huen-
erfauth, M. (2018). Modeling the Speed and Timing
of American Sign Language to Generate Realistic Ani-
mations. In Proceedings of the 20th International ACM
SIGACCESS Conference on Computers and Accessibil-
ity, ASSETS ’18, pages 259–270, New York, NY, USA.
ACM.

Costa, A. C. d. R. and Dimuro, G. P. (2003). SignWriting
and SWML: Paving the way to sign language processing.
Traitement Automatique des Langues de Signes, Work-
shop on Minority Languages, pages 11–14.

Efthimiou, E., Fotinea, S.-E., Goulas, T., Vacalopoulou, A.,
Vasilaki, K., and Dimou, A.-L. (2019). Sign Language
Technologies and the Critical Role of SL Resources in
View of Future Internet Accessibility Services. 7(1):18.

Elliott, R., Glauert, J. R., Kennaway, J., and Marshall, I.
(2000). The development of language processing support
for the visicast project. In ASSETS, volume 2000, page
4th.

Hanke, T. (2004). HamNoSys-Representing sign language
data in language resources and language processing con-
texts. Proceedings of the Workshop on Representation

https://tla.mpi.nl/tools/tla-tools/elan/
http://vhg.cmp.uea.ac.uk/tech/jas/vhg2019/cwa/TwoAvServer.html
http://vhg.cmp.uea.ac.uk/tech/jas/vhg2019/cwa/TwoAvServer.html
https://unity.com/


6039

and Processing of Sign Language, Workshop to the forth
International Conference on Language Resources and
Evaluation (LREC’04), pages 1–6.

Kaur, K. andKumar, P. (2016). HamNoSys to SiGMLCon-
version System for Sign Language Automation. Procedia
- Procedia Computer Science, 89:794–803.

Kushalnagar, R. (2019). Deafness and Hearing Loss. In
Yeliz Yesilada and Simon Harper (Eds.),Web Accessibil-
ity: A Foundation for Research. London:Springer Lon-
don, pp. 35–47.

Zwitserlood, I., Verlinden, M., Ros, J., and Van Der Schoot,
S. (2004). Synthetic signing for the deaf: Esign. In
Proceedings of the conference and workshop on assistive
technologies for vision and hearing impairment, CVHI,
Granada, Spain. Citeseer.


