@inproceedings{dargis-etal-2020-development,
title = "Development and Evaluation of Speech Synthesis Corpora for {L}atvian",
author = "Dar{\c{g}}is, Roberts and
Paikens, Peteris and
Gruzitis, Normunds and
Auzina, Ilze and
Akmane, Agate",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.818",
pages = "6633--6637",
abstract = "Text to speech (TTS) systems are necessary for all languages to ensure accessibility and availability of digital language services. Recent advances in neural speech synthesis have eText to speech (TTS) systems are necessary for any language to ensure accessibility and availability of digital language services. Recent advances in neural speech synthesis have enabled the development of such systems with a data-driven approach that does not require significant development of language-specific tools. However, smaller languages often lack speech corpora that would be sufficient for training current neural TTS models, which require at least 30 hours of good quality audio recordings from a single speaker in a noiseless environment with matching transcriptions. Making such a corpus manually can be cost prohibitive. This paper presents an unsupervised approach to obtain a suitable corpus from unannotated recordings using automated speech recognition for transcription, as well as automated speaker segmentation and identification. The proposed method and software tools are applied and evaluated on a case study for developing a corpus suitable for Latvian speech synthesis based on Latvian public radio archive data.nabled the development of such systems with a data-driven approach that does not require much language-specific tool development. However, smaller languages often lack speech corpora that would be sufficient for training current neural TTS models, which require approximately 30 hours of good quality audio recordings from a single speaker in a noiseless environment with matching transcriptions. Making such a corpus manually can be cost prohibitive. This paper presents an unsupervised approach to obtain a suitable corpus from unannotated recordings using automated speech recognition for transcription, as well as automated speaker segmentation and identification. The proposed methods and software tools are applied and evaluated on a case study for developing a corpus suitable for Latvian speech synthesis based on Latvian public radio archive data.",
language = "English",
ISBN = "979-10-95546-34-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dargis-etal-2020-development">
<titleInfo>
<title>Development and Evaluation of Speech Synthesis Corpora for Latvian</title>
</titleInfo>
<name type="personal">
<namePart type="given">Roberts</namePart>
<namePart type="family">Darģis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peteris</namePart>
<namePart type="family">Paikens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Normunds</namePart>
<namePart type="family">Gruzitis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilze</namePart>
<namePart type="family">Auzina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Agate</namePart>
<namePart type="family">Akmane</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>Text to speech (TTS) systems are necessary for all languages to ensure accessibility and availability of digital language services. Recent advances in neural speech synthesis have eText to speech (TTS) systems are necessary for any language to ensure accessibility and availability of digital language services. Recent advances in neural speech synthesis have enabled the development of such systems with a data-driven approach that does not require significant development of language-specific tools. However, smaller languages often lack speech corpora that would be sufficient for training current neural TTS models, which require at least 30 hours of good quality audio recordings from a single speaker in a noiseless environment with matching transcriptions. Making such a corpus manually can be cost prohibitive. This paper presents an unsupervised approach to obtain a suitable corpus from unannotated recordings using automated speech recognition for transcription, as well as automated speaker segmentation and identification. The proposed method and software tools are applied and evaluated on a case study for developing a corpus suitable for Latvian speech synthesis based on Latvian public radio archive data.nabled the development of such systems with a data-driven approach that does not require much language-specific tool development. However, smaller languages often lack speech corpora that would be sufficient for training current neural TTS models, which require approximately 30 hours of good quality audio recordings from a single speaker in a noiseless environment with matching transcriptions. Making such a corpus manually can be cost prohibitive. This paper presents an unsupervised approach to obtain a suitable corpus from unannotated recordings using automated speech recognition for transcription, as well as automated speaker segmentation and identification. The proposed methods and software tools are applied and evaluated on a case study for developing a corpus suitable for Latvian speech synthesis based on Latvian public radio archive data.</abstract>
<identifier type="citekey">dargis-etal-2020-development</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.818</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>6633</start>
<end>6637</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Development and Evaluation of Speech Synthesis Corpora for Latvian
%A Darģis, Roberts
%A Paikens, Peteris
%A Gruzitis, Normunds
%A Auzina, Ilze
%A Akmane, Agate
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G English
%F dargis-etal-2020-development
%X Text to speech (TTS) systems are necessary for all languages to ensure accessibility and availability of digital language services. Recent advances in neural speech synthesis have eText to speech (TTS) systems are necessary for any language to ensure accessibility and availability of digital language services. Recent advances in neural speech synthesis have enabled the development of such systems with a data-driven approach that does not require significant development of language-specific tools. However, smaller languages often lack speech corpora that would be sufficient for training current neural TTS models, which require at least 30 hours of good quality audio recordings from a single speaker in a noiseless environment with matching transcriptions. Making such a corpus manually can be cost prohibitive. This paper presents an unsupervised approach to obtain a suitable corpus from unannotated recordings using automated speech recognition for transcription, as well as automated speaker segmentation and identification. The proposed method and software tools are applied and evaluated on a case study for developing a corpus suitable for Latvian speech synthesis based on Latvian public radio archive data.nabled the development of such systems with a data-driven approach that does not require much language-specific tool development. However, smaller languages often lack speech corpora that would be sufficient for training current neural TTS models, which require approximately 30 hours of good quality audio recordings from a single speaker in a noiseless environment with matching transcriptions. Making such a corpus manually can be cost prohibitive. This paper presents an unsupervised approach to obtain a suitable corpus from unannotated recordings using automated speech recognition for transcription, as well as automated speaker segmentation and identification. The proposed methods and software tools are applied and evaluated on a case study for developing a corpus suitable for Latvian speech synthesis based on Latvian public radio archive data.
%U https://aclanthology.org/2020.lrec-1.818
%P 6633-6637
Markdown (Informal)
[Development and Evaluation of Speech Synthesis Corpora for Latvian](https://aclanthology.org/2020.lrec-1.818) (Darģis et al., LREC 2020)
ACL