@inproceedings{rauchbauer-etal-2020-multimodal,
title = "Multimodal Corpus of Bidirectional Conversation of Human-human and Human-robot Interaction during f{MRI} Scanning",
author = "Rauchbauer, Birgit and
Hmamouche, Youssef and
Bigi, Brigitte and
Pr{\'e}vot, Laurent and
Ochs, Magalie and
Chaminade, Thierry",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.84",
pages = "668--675",
abstract = "In this paper we present investigation of real-life, bi-directional conversations. We introduce the multimodal corpus derived from these natural conversations alternating between human-human and human-robot interactions. The human-robot interactions were used as a control condition for the social nature of the human-human conversations. The experimental set up consisted of conversations between the participant in a functional magnetic resonance imaging (fMRI) scanner and a human confederate or conversational robot outside the scanner room, connected via bidirectional audio and unidirectional videoconferencing (from the outside to inside the scanner). A cover story provided a framework for natural, real-life conversations about images of an advertisement campaign. During the conversations we collected a multimodal corpus for a comprehensive characterization of bi-directional conversations. In this paper we introduce this multimodal corpus which includes neural data from functional magnetic resonance imaging (fMRI), physiological data (blood flow pulse and respiration), transcribed conversational data, as well as face and eye-tracking recordings. Thus, we present a unique corpus to study human conversations including neural, physiological and behavioral data.",
language = "English",
ISBN = "979-10-95546-34-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rauchbauer-etal-2020-multimodal">
<titleInfo>
<title>Multimodal Corpus of Bidirectional Conversation of Human-human and Human-robot Interaction during fMRI Scanning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Birgit</namePart>
<namePart type="family">Rauchbauer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Youssef</namePart>
<namePart type="family">Hmamouche</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brigitte</namePart>
<namePart type="family">Bigi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Prévot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magalie</namePart>
<namePart type="family">Ochs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Chaminade</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>In this paper we present investigation of real-life, bi-directional conversations. We introduce the multimodal corpus derived from these natural conversations alternating between human-human and human-robot interactions. The human-robot interactions were used as a control condition for the social nature of the human-human conversations. The experimental set up consisted of conversations between the participant in a functional magnetic resonance imaging (fMRI) scanner and a human confederate or conversational robot outside the scanner room, connected via bidirectional audio and unidirectional videoconferencing (from the outside to inside the scanner). A cover story provided a framework for natural, real-life conversations about images of an advertisement campaign. During the conversations we collected a multimodal corpus for a comprehensive characterization of bi-directional conversations. In this paper we introduce this multimodal corpus which includes neural data from functional magnetic resonance imaging (fMRI), physiological data (blood flow pulse and respiration), transcribed conversational data, as well as face and eye-tracking recordings. Thus, we present a unique corpus to study human conversations including neural, physiological and behavioral data.</abstract>
<identifier type="citekey">rauchbauer-etal-2020-multimodal</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.84</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>668</start>
<end>675</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multimodal Corpus of Bidirectional Conversation of Human-human and Human-robot Interaction during fMRI Scanning
%A Rauchbauer, Birgit
%A Hmamouche, Youssef
%A Bigi, Brigitte
%A Prévot, Laurent
%A Ochs, Magalie
%A Chaminade, Thierry
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G English
%F rauchbauer-etal-2020-multimodal
%X In this paper we present investigation of real-life, bi-directional conversations. We introduce the multimodal corpus derived from these natural conversations alternating between human-human and human-robot interactions. The human-robot interactions were used as a control condition for the social nature of the human-human conversations. The experimental set up consisted of conversations between the participant in a functional magnetic resonance imaging (fMRI) scanner and a human confederate or conversational robot outside the scanner room, connected via bidirectional audio and unidirectional videoconferencing (from the outside to inside the scanner). A cover story provided a framework for natural, real-life conversations about images of an advertisement campaign. During the conversations we collected a multimodal corpus for a comprehensive characterization of bi-directional conversations. In this paper we introduce this multimodal corpus which includes neural data from functional magnetic resonance imaging (fMRI), physiological data (blood flow pulse and respiration), transcribed conversational data, as well as face and eye-tracking recordings. Thus, we present a unique corpus to study human conversations including neural, physiological and behavioral data.
%U https://aclanthology.org/2020.lrec-1.84
%P 668-675
Markdown (Informal)
[Multimodal Corpus of Bidirectional Conversation of Human-human and Human-robot Interaction during fMRI Scanning](https://aclanthology.org/2020.lrec-1.84) (Rauchbauer et al., LREC 2020)
ACL