
Proceedings of 1st Workshop on Language Technologies for Historical and Ancient Languages, pages 84–93
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

84

Distributional Semantics for Neo-Latin

Jelke Bloem, Maria Chiara Parisi, Martin Reynaert, Yvette Oortwijn and Arianna Betti
Institute for Logic, Language and Computation, University of Amsterdam

{j.bloem, m.w.c.reynaert}@uva.nl, {mariachiara.paris, yvette.oortwijn, ariannabetti}@gmail.com

Abstract
We address the problem of creating and evaluating quality Neo-Latin word embeddings for the purpose of philosophical research,
adapting the Nonce2Vec tool to learn embeddings from Neo-Latin sentences. This distributional semantic modeling tool can learn from
tiny data incrementally, using a larger background corpus for initialization. We conduct two evaluation tasks: definitional learning of Latin
Wikipedia terms, and learning consistent embeddings from 18th century Neo-Latin sentences pertaining to the concept of mathematical
method. Our results show that consistent Neo-Latin word embeddings can be learned from this type of data. While our evaluation results
are promising, they do not reveal to what extent the learned models match domain expert knowledge of our Neo-Latin texts. Therefore,
we propose an additional evaluation method, grounded in expert-annotated data, that would assess whether learned representations are
conceptually sound in relation to the domain of study.
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1. Introduction
Christian Wolff (1679-1754)’s philosophical ideas on the so-
called ‘mathematical method’ are deemed greatly influential
upon 18th century thinking about science (Frängsmyr, 1975,
654-55). An interesting research question is whether the in-
fluence of Wolff’s ideas can be more precisely assessed by
using a mixed (quantitative, qualitative and computational)
approach along the lines of Betti et al. (2019) and Ginammi
et al. (2020). In addressing this question, we want to link
concepts and terms used to express them using computa-
tional techniques, including query expansion based on dis-
tributional semantics, information retrieval as a downstream
task, and meaning shift analysis built upon this.
The endeavour involves several challenges, starting with (i)
building a high-quality, multi-author 18th century philos-
ophy corpus with distinctive characteristics including Neo-
Latin texts; and (ii) getting satisfactory distributional seman-
tics models for Neo-Latin. In this paper we report results on
(ii), and describe initial steps towards (i). As to (ii), our goal
is to evaluate Neo-Latin (word) embeddings learned from
tiny data (very small data, i.e. a few sentences, following
Herbelot and Baroni (2017)) from the specific domain of
philosophy, adapting methods known to work well for this
data type, but previously applied to English only (Herbelot
and Baroni, 2017; Bloem et al., 2019). We perform two eval-
uation tasks: 1. compare embeddings learned from a single
Vicipaedia definitional sentence to Word2vec (Mikolov et
al., 2013) embeddings learned from the full Vicipaedia cor-
pus, and 2. test the consistency of embeddings trained on
tiny amounts of topic-specific 18th century Neo-Latin data,
initialized using different background corpora.

2. Background
Advances in natural language processing and expanding dig-
ital archives have made it possible to analyse old texts in
new ways (Hinrichs et al., 2019). Distributional semantics
(DS) (Turney and Pantel, 2010; Erk, 2012; Clark, 2015) has
emerged as an effective way to computationally represent
words and sentences in a way that appears to represent their
semantic properties. Along with its prevalence in present-
day natural language processing, this aspect makes DS a

promising family of techniques for application in text-based
fields. The application of DS models to historical languages
is however challenging, as large amounts of training data
are required (Bengio et al., 2003), while relatively little new
digital text is being produced online, in comparison with liv-
ing languages. Artefacts from digitization processes such as
Optical Character Recognition (OCR) may also pose prob-
lems. At the same time, philosophers who are interested in
Latin texts make accurate studies of concepts and expect
high accuracy from the digital tools they use. Application
of DS models in this context therefore demands the use of
specific methods suited to low-resource languages, small
corpus sizes and domain-specific evaluation.

2.1. Latin word embeddings
Latin is a highly inflectional language with words taking
many forms depending on features such as case and gen-
der, and language models tend to perform worse on inflec-
tional languages. This effect is greater in n-gram models
(Cotterell et al., 2018) due to how each word form is repre-
sented separately, leading to a large vocabulary. Word2vec
also represents words in this way.
DS models of Latin have only been explored to a limited
extent, and never for Neo-Latin texts. In contrast to the more
numerous and larger-sized Latin corpora of the so-called La-
tinitas Romana, or Classical Latin (7th cent. B.C.-6th cent.
A.D.), Latin corpora of the so-called Latinitas Nova, or Neo-
Latin (15th cent. A.D.-21st cent. A.D.), also called New
Latin when referring specifically to the language, are usually
smaller in size,1 and they often present linguistic variations
or new word types in comparison to Classical Latin corpora.
For example, the terms analyticus (analytic) or syntheticus
(synthetic) are present only in Neo-Latin, and not in Clas-
sical Latin. Various Latin corpora are available. Vicipaedia,
the Latin Wikipedia, contains 10.7M tokens of text that has
been written in recent years. The Latin Library (16.3M to-

1For example, in the LatinISE historical corpus v2.2
(McGillivray and Kilgarriff, 2013), the subcorpus Histori-
cal era Romana (8,069,158 tokens) is considerably bigger than
the Historical era Nova one (1,985,968 tokens)
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kens) is available in plain text format2, containing texts from
all time periods. There are a few manually annotated tree-
banks: the Index Thomisticus Treebank (Passarotti, 2019)
(354k tokens, 13th century, the works of Thomas Aquinas)
based on the Index Thomisticus (Busa, 1974), Perseus (Bam-
man and Crane, 2011) (53K tokens, Classical Latin) and
Latin PROIEL (Haug and Jøhndal, 2008) (Classical Latin
and the 4th century Vulgate New Testament translations).
These are all partially available in Universal Dependencies
format, including tokenization, lemmatization and depen-
dency syntax (Nivre et al., 2016; Cecchini et al., 2018). Fur-
thermore, there is the Late Latin Charter Treebank (Korki-
akangas and Passarotti, 2011) (250k tokens, medieval Latin).
There is some big data as well, specifically a 1.38 billion to-
ken corpus of Latin OCRed text (Bamman and Smith, 2012),
a large but rather noisy resource due to mishaps in the OCR
and automatic language detection processes.
Some Latin DS models exist: Latin data has been in-
cluded in large multilingual semantic modeling (Grave et
al., 2018) and parsing (Zeman et al., 2018) efforts, using
automatic language detection to identify the material as
Latin. Another large-scale approach was taken by Bjerva
and Praet (2015), who trained embeddings on the aforemen-
tioned Bamman corpus (Bamman and Smith, 2012) using
Word2vec (Mikolov et al., 2013). Parameters were taken
from Baroni et al. (2014), who tuned on an English word
similarity resource with models trained on a concatenation
of large English-language corpora. The resulting models
were not tuned or evaluated for Latin. Manjavacas et al.
(2019) applied fastText to the same data to create embed-
dings for the task of semantic information retrieval, also
without tuning, finding that more basic BOW methods out-
perform it and finding fastText to outperform Word2vec.
The only study we are aware of that includes an evaluation
of Latin word embeddings is by Sprugnoli et al. (2019), who
create lemma embeddings from a manually annotated cor-
pus of Classical Latin, the 1.7M token Opera Latina corpus,
which includes manually created lemmatization. Sprugnoli
et al. (2019) evaluate the lemma embeddings by extracting
synonym sets from dictionaries and performing a synonym
selection task on them. For a given target term, the cosine
distance of its vector to a set of four other terms is computed,
one of which is a synonym. To successfully complete the
task, the synonym has to be nearer to the target term than
the alternative terms. The alternative terms were manually
checked to make sure they are not synonyms as well. They
find that fastText-based models, which can represent sub-
word units, perform better on this task than Word2vec-based
model. They note that this may be due to Latin’s heavily in-
flectional morphology, though when using lemmatized data,
the effect of morphology should be limited.
In summary, there are no existing DS models relevant for ad-
dressing our research question, as Bjerva and Praet (2015)’s
models were not evaluated on Latin and Sprugnoli et al.
(2019)’s models were designed for Classical Latin. The rel-
evance of the available corpora for creating Neo-Latin word
embeddings is an open question that we will address.

2http://thelatinlibrary.com/, available as part
of the Classical Language Toolkit: https://github.com/
cltk/latin_text_latin_library

2.2. Tiny data
The application of DS models to Latin involves working
with smaller datasets than usual in DS. Some work has
been done to evaluate the effect of data size and develop
methods suited to learning from less data. Factorized count
models have been found to work better on smaller datasets
(Sahlgren and Lenci, 2016) compared to the Word2vec fam-
ily of models (Mikolov et al., 2013). Herbelot and Baroni
(2017)’s Nonce2Vec, however, shows that Word2vec can be
adapted to learn even from a single sentence, if that sentence
is highly informative. In an experiment on a small dataset
of philosophical texts (Bloem et al., 2019), this method re-
sulted in more consistent embeddings than a count-based
model. The way in which Nonce2Vec can learn from such
small amounts of data is by learning incrementally, starting
from a semantic background model that is trained on a larger
corpus, such as all Wikipedia text of a language. Given any
term with one or a few sentences of context, that term can be
placed into this background model, using nothing but those
context sentences as training data. First, a simple additive
model (Lazaridou et al., 2017) is used for initialization, tak-
ing the sum of the Word2vec background space vectors of
all the context words of the target term. This additive model
is also used as an evaluation baseline. Next, Nonce2Vec
trains the background skipgram model on the context sen-
tences for the target term vector, without modifying the net-
work parameters of the background space3, with an initial
high learning rate, large window size and little subsampling.
In this way, Nonce2Vec can learn a vector for a target term
based on only one or a few sentences of context, even if that
term does not occur in the larger background corpus. As
we currently have only tiny amounts of in-domain data, and
larger corpora are available that can be used as background
(see section 2.1.), we use Nonce2Vec to take distributional
information from a general-domain background corpus and
further train it on our tiny in-domain dataset.

2.3. Evaluation
Distributional semantic models are typically evaluated by
comparing similarities between its word embeddings to a
gold standard of word similarity scores based on human rat-
ings, such as the MEN dataset (Bruni et al., 2014) or the
SimLex-999 dataset (Hill et al., 2015) for English. How-
ever, this is a rarely feasible method in specialised domains
and low-resource situations. Not only do such datasets not
exist for Latin, but even for English, the meaning of words
reflected in these resources may differ from their meaning
in the philosophical domain (Bloem et al., 2019).
Evaluation sets can also be created automatically using ex-
isting resources. Synonym sets, e.g. from lexical semantic
databases, can be used as gold standard data by means of a
synonym selection task, which measures how often the near-
est neighbour of a vector is its synonym. This method was
used for Latin by extracting information from dictionaries
(Sprugnoli et al., 2019), but for our use case, this approach

3Nonce2Vec can also modify the background model in newer
versions (Kabbach et al., 2019), but this can lead to a snowball
effect, where the context sentence vectors are significantly moved
towards the position of the new context through backpropagation,
which would worsen the quality particularly of small models.

http://thelatinlibrary.com/
https://github.com/cltk/latin_text_latin_library
https://github.com/cltk/latin_text_latin_library
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may also have the issue of not reflecting domain-specific
meanings. General dictionary synonyms may not reflect the
way words are used in our target domain. Herbelot and Ba-
roni (2017) evaluate Nonce2Vec by using vectors from a
Word2vec model of Wikipedia text as gold vectors. The
Word2vec model was in turn evaluated using word simi-
larity scores from the MEN dataset. This evaluation can
be conducted for any language in which Wikipedia is avail-
able, although for Latin, we do not have a word similarity
test collection equivalent to the MEN dataset to evaluate a
Word2vec model trained on Vicipaedia.
Some aspects of embedding quality can be measured with-
out a gold standard. The metric of reliability quantifies the
randomness inherent in some predictive distributional se-
mantic models, and to what extent it can affect the results
(Hellrich and Hahn, 2016). Bloem et al. (2019) propose con-
sistency as a metric for evaluating low-resource DS models,
defining a model as consistent “if its output does not vary
when its input should not trigger variation (e.g. because it
is sampled from the same text)”. The consistency metric
computes the ability of a model to learn similar embed-
dings from different parts of homogeneous data, and does
not require ‘gold’ vectors to compute as it only compares
learned vectors to each other. Multiple vectors for a single
target term but with different context sentences are trained
from identically parametrized models, and compared to each
other in terms of nearest neighbour rank and cosine similar-
ity. Higher similarity and nearest neighbour rank between
these different vectors of the same target term indicates that
the model is more consistent at the level of the domain of
text that the context sentences are sampled from (a time
period, author, genre, topic etc.). While this measure does
not capture all aspects of model quality, it can be used to
quantify what model configurations and which background
corpora produce consistent embeddings.
To evaluate in-domain term meaning, domain-specific
knowledge should be used in the evaluation. Comparative
intrinsic evaluation (Schnabel et al., 2015) — i. e. letting
users compare and rank terms from a list of nearest neigh-
bours against a query term for semantic similarity — can be
used to have experts assess the output of a model, and quan-
tify the outcome. When evaluating models of philosophical
concepts, this is not a trivial task. As even domain experts
might be unaware of all possible expressions of a concept
used by a particular author, constructing ground truths of
in-domain key concepts paired off with known terms is nec-
essary for evaluation, as shown by Meyer et al. (2019). This,
in turn requires a large in-domain corpus. Although we are
currently in the process of constructing a corpus with these
exact characteristics, we do not have it yet in a form that is
suitable for evaluation based on expert ground truths. If con-
structed properly in a machine-readable way, such a ground
truth would enable automatic evaluation of model output in
comparison to the ground truth.

3. Tasks
Considering the constraints on data size and evaluation for
our domain, we perform two evaluations of Nonce2Vec on
Latin data. The first evaluation aims to replicate Herbelot
and Baroni (2017)’s English definitional dataset and eval-

uation for Latin, and shows us that Nonce2Vec can learn
meaning representations from a single sentence that are sim-
ilar to those learned from a larger corpus. In the second task,
we evaluate vectors trained on a tiny dataset composed of
sentences from texts relevant to our research question on
Wolff’s mathematical method. We perform the consistency
evaluation of Bloem et al. (2019), while testing different
background models for initialization. The second evaluation
task shows us that Nonce2Vec can learn word embeddings
from these sentences consistently even without access to a
background corpus from the target domain.4

3.1. Vicipaedia definitional dataset evaluation
We built a dataset of terms and their definitional sentences,
following Herbelot and Baroni (2017)’s definitional dataset
for English using the same procedure as much as possible.
We used Vicipaedia as a source, downloaded and extracted
using Witokit5. This source was chosen because Herbelot
and Baroni (2017) also used Wikipedia and because it is rel-
atively close in time to 18th century Neo-Latin, is large, and
is free of OCR errors. The dataset was constructed by taking
Vicipaedia page titles containing one word only, taking that
page title as a target term and taking the first sentence of
the corresponding article as the definitional sentence. The
sentences were tokenized using Polyglot6 and we removed
punctuation. We then filtered out target terms that occur
fewer than 50 times in Vicipaedia to ensure that they are
well-represented in the background model. Herbelot & Ba-
roni used a frequency cutoff of 200 in the UkWaC corpus,
but our corpus is smaller so we chose a lower cutoff. We
also filtered out terms for which the definitional sentence
is shorter than 10 words, to ensure there is some context to
learn from. Terms for which the title word does not literally
occur in the first Vicipaedia sentence were filtered as well.
Occurrences of the target term were replaced by the string
‘ ’, ensuring that a new vector is learned for that term. We
then randomly sampled 1000 of these terms and sentences,
splitting them into 700 tuning and 300 test instances. All
of this replicates Herbelot and Baroni (2017)’s extraction
procedure for English.
To estimate the quality of the extracted material, we manu-
ally checked 99 of the randomly sampled definitional sen-
tences and found that 70 contained proper definitions, 21
contained definitions with additional non-definitional infor-
mation and 8 did not contain proper definitions. As Herbelot
and Baroni (2017) extracted full sentences, definitions with
additional information also occur in their sets, so we accept
these cases. After updating our automatic extraction proce-
dure, of the 8 non-definitional cases, 3 were excluded by ex-
cluding cases with parentheses in the title, 2 were resolved
by including words between parentheses in the sentence ex-
traction, 1 is a proper name without definition, and 2 now
include a definition but also additional material.
Nonce2Vec can use these definitional sentences to perform
one-shot learning of the target term. This newly learnt vector

4A branch of Nonce2Vec that includes these evaluations and
datasets can be found at https://github.com/bloemj/
nonce2vec/tree/nonce2vec-latin

5https://github.com/akb89/witokit
6https://github.com/aboSamoor/polyglot

https://github.com/bloemj/nonce2vec/tree/nonce2vec-latin
https://github.com/bloemj/nonce2vec/tree/nonce2vec-latin
https://github.com/akb89/witokit
https://github.com/aboSamoor/polyglot
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can then be compared to the vector produced by a standard
(skipgram) Word2vec model trained over the entire Vici-
paedia. It is expected that a well-performing system will
learn from the definitional sentence a vector that is close to
the Vicipaedia vector: their Reciprocal Rank (RR) will be
high. We calculate RR between the learned vector and the
gold Vicipaedia vector from the background model, over all
target terms, and take the resulting Mean Reciprocal Rank
(MRR) as a measure of model quality. As a baseline, we use
the additive model which just sums context vectors from the
background space, following Herbelot and Baroni (2017).7

3.2. Neo-Latin dataset evaluation
We built a Neo-Latin dataset consisting of terms and their
context sentences. This material is lifted from a small por-
tion (about 20%) of a Neo-Latin corpus that is being used
in our ongoing work (Van den Berg et al., ongoing). The
full corpus includes 162 books in Latin and 146 books in
German published in Germany between 1720 and 1790. We
estimate the page count of the Neo-Latin corpus at roughly
40.000. The full corpus has several distinctive characteris-
tics. It is (i) built by a team of experts towards a specific
scholarly purpose, that of investigating the concept of math-
ematical method in 18th century Germany; (ii) it presents
linguistic variation and vocabulary typical of Neo-Latin cor-
pora (see section 2.1.); additionally, the texts contained in
the corpus are more recent in comparison to Neo-Latin cor-
pora from e.g. the 15th century. Another characteristic of
our corpus is (iii) that it includes only academic philoso-
phy, logic and science in general. In addition to focusing on
specific topics and their corresponding technical language,
the corpus thus also provides insight into the social context
of the authors (Europeans with a deep command of Latin,
(writing under) male (names), of a certain age and socio-
economic background).
Manual annotations on the Neo-Latin corpus are currently
ongoing. They aim at extracting lists of terms expressing
certain philosophical concepts relevant to the study of the
concept of mathematical method in 18th century Germany,
as well as their (functional) synonyms, and the context in
which they appear. A selection of contexts get manually
typed in full. The Neo-Latin dataset we use in our task is a
subset of the full annotation set, and is curated by the same
annotator of the full Neo-Latin annotation set, a philosopher
by training with knowledge of Latin (Maria Chiara Parisi).
The dataset presents – a fortiori – the features of the full cor-
pus indicated above and consists of a small, manually-typed
and manually-checked set of 30 target terms and, for each
term, three sentences (see Table 4) in which the term occurs.
The target term (column 1) is replaced in the snippets (col-
umn 2, 3 and 4) with ‘ ’. The Neo-Latin corpusculum we
use is a tiny, but sufficient set of data to test the consistency
of Neo-Latin word embeddings.
As we do not yet have the full corpus in a suitable machine-
readable format, we cannot perform the same evaluation as
for the definitional dataset, but we can measure vector con-
sistency (Bloem et al. (2019), see 2.3.). We can use an out-

7We run the Nonce2Vec algorithm without the notion of infor-
mativeness incorporated by Kabbach et al. (2019), as that option
requires the use of an additional language model.

of-domain background corpus, such as Vicipaedia, for ini-
tialization, in order to use Nonce2Vec to model these terms.
Note that, doing this, we can no longer evaluate the result-
ing vectors by comparing the learned vectors to those from
the background corpus. The background corpus is text of a
different domain than 18th century mathematical text, and
may not even contain the core terms from these works, or it
may use them in a different way. Thus, unlike in Herbelot
and Baroni (2017)’s Wiki definitions evaluation setup, vec-
tors based on an out-of-domain background corpus cannot
serve as a gold standard for vectors from our domain.
The consistency metric (Bloem et al., 2019) evaluates the
stability of vector spaces generated by a particular model on
a homogeneous dataset extracted from a particular domain
of text, without a gold standard. In our case, the model is
Nonce2Vec, and the homogeneous dataset is our tiny Neo-
Latin mathematical method subset. Consistency is com-
puted by measuring the similarity between vectors of the
same word, trained over different samples of text (the sen-
tences from the dataset). We can use this metric to com-
pare different configurations of Nonce2Vec on the task and
see which one results in more consistent embeddings. In
particular, we are interested in trying different background
models for initializing the Nonce2Vec vectors, trained on
different background corpora. We hypothesize that a back-
ground model that leads to higher consistency scores on this
task with our Neo-Latin dataset provides a better initializa-
tion for our in-domain term vectors. Such a model, we might
conjecture, contains more of the relevant vocabulary, used
in a more similar way to that of our texts.

4. Results
4.1. Definitional evaluation
In the first evaluation, we compare vectors trained on Vici-
paedia definitional sentences to vectors from the Vicipaedia
background model, for the same target term. We first train a
standard Word2vec model on Vicipaedia, which Nonce2Vec
does using the Gensim (Řehůřek and Sojka, 2010) imple-
mentation of Word2vec. While Herbelot and Baroni (2017)
do not tune this model, as Vicipaedia is smaller than the
English Wikipedia they use, we try to change the default pa-
rameters to accommodate this. We find that a higher learn-
ing rate (α = .01), increased window size (15) and higher
subsampling rate (1−4) provides better results on our tuning
set. Next, we tune and run Nonce2Vec on our Latin defini-
tional dataset, using the background model for initialization
and as the sum baseline. We performed a grid search of
the same parameter space as Herbelot and Baroni (2017) do,
containing different learning rates ([0.5, 0.8,1, 2, 5, 10, 20]),
the number of negative samples ([3, 5, 10]), the subsampling
rate ([500, 1000,10000]), and window size ([5, 10,15, 20]).
The subsampling rate decay ([1.0, 1.3,1.9, 2.5]) and win-
dow decay ([1, 3,5]) are not relevant when training vectors
on single sentences. Bold values are the best performing
values in Herbelot and Baroni (2017).
Using the tuned Vicipaedia background model and applying
it to the test set, the best performance is obtained for a win-
dow size of 5, a learning rate of 0.5, a subsampling rate of
500, and 3 negative samples. The lambda parameter was set
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Model MRR Median rank
N2V-best 0.01936 251
N2V-defaultbg 0.15832 1866
N2V-default 0.00410 5736
Sum 0.01263 322

Table 1: Results on definitional dataset

to the default 70. Table 1 shows results using these tuned pa-
rameters (N2V-best) and the default Nonce2Vec parameters
from the English experiment (N2V-default) as compared
to the sum baseline (Sum). The N2V-defaultbg result uses
our tuned N2V parameters, but with the default background
model parameters, and the N2V-default result uses default
parameters from Herbelot and Baroni (2017) both for the
background model and for training on the definitional data.
On the test instances, we find that N2V shows an improve-
ment over the simple additive model baseline. As shown
in Table 1, the median rank of the gold vectors for our test
instances is 251, out of 14,049 neighbours (the vocabulary
size). For English, Herbelot and Baroni (2017) report a me-
dian rank of 623. While this number appears worse than
our score, this metric is sensitive to vocabulary size: their
English model has a vocabulary of 259,376 types due to
the larger corpus, and ranking high is more difficult when
there are more other vectors to rank. The Mean Recipro-
cal Rank (MRR) measure is 0.019 on the Latin definitions
but 0.049 on the English definitions, showing that the near-
est neighbours of the gold Wiki vectors rank higher among
the nearest neighbours of the learned definitional vector for
English than for Latin.

4.2. Neo-Latin consistency evaluation
Recall that for the Neo-Latin data that pertains to our philo-
sophical research question, we do not have gold vectors, as
there is no background corpus for our domain yet. Instead,
we compute consistency between vectors trained over differ-
ent context sentences of the same target term (shown in Ta-
ble 4). We experiment with initializing our vectors based on
models trained from various background corpora with vari-
ous model parameters, in order to find out what background
model leads to more consistent results for our domain of
Latin text. As background corpora, we use the Vicipaedia,
Latin Text Library, Latin Treebanks and Bamman corpora
described in section 2.1. The Latin Text Library corpus was
tokenized using Polyglot in the same way as the Vicipae-
dia corpus. The Bamman corpus was tokenized and lower-
cased by Ucto (van Gompel et al., 2017). Punctuation was
removed and, as these may be disruptive to distributional
models, we let Ucto replace items that are less lexical, such
as numbers of any type, dates, etc. by class labels. Of the
treebanks, we use the Universal Dependencies versions of
the Index Thomistius Treebank (165K tokens), the Perseus
LDT (29K) and Proiel (200K).
For each background model, we compute consistency met-
rics over the vectors learned by Nonce2Vec of all 30 Neo-
Latin target terms. We have three vectors per term, one from
each context sentence, and compute the metrics between all
pairs of the three vectors ( ~a1- ~a2, ~a2- ~a3, ~a1- ~a3). This evalu-

Model cos-sim rank vocab
bamman-c50-d400 0.701 47.5 901K
bamman-c50-d100 0.776 202 901K
lattextlib-c50-d400 0.332 604 24.7K
lattextlib-c50-d100 0.450 1279 24.7K
lattextlib-c20-d400 0.505 75 50.4K
lattextlib-c20-d100 0.621 301 50.4K
vicipaedia-c50-d400 0.482 103 14.0K
vicipaedia-c50-d100 0.603 219 14.0K
vicipaedia-c20-d400 0.551 47.7 30.4K
vicipaedia-c20-d100 0.674 244 30.4K
treebanks-c50-d400 0.133 292 810
treebanks-c50-d100 0.165 286 810
treebanks-c5-d400 0.298 1103 7.3K
treebanks-c5-d100 0.390 703 7.3K

Table 2: Consistency metrics on our Neo-Latin dataset using
Nonce2Vec, initialized with various background models.

ation data is shown in Table 4. We consider two metrics for
comparing a pair of vectors ~a1 and ~a2: by similarity, where
a higher cosine similarity indicates more consistency, or by
nearest neighbor rank, where a higher rank of ~a1 among the
nearest neighbors of ~a2 indicates more consistency. Every
vector in the background model, as well as ~a2, is ranked by
cosine similarity to ~a1 to compute this rank value.
We use the same Nonce2Vec parameters across all experi-
ments: the ones that performed best in our definitional evalu-
ation (section 4.1.). We experiment with background models
with different dimensionality: d400 (the Nonce2Vec default)
and d100 (found to perform better by Sprugnoli et al. (2019)
on lemmatized Latin data). We also vary the frequency cut-
off, as when working with smaller data, we may wish to
include more words even if they are infrequent. We try a
cutoff of 50 (c50), the nonce2vec default, and c20 or c5 de-
pending on the size of the corpus. The results of Nonce2Vec
with the different background models are listed in Table 2.
We observe that the most consistent vectors are obtained
using the largest dataset as a background corpus, the Bam-
man corpus. Using the largest Bamman model (bamman-
c50-d400), we find that different vectors for the same term
trained on a different sentence are on average rank 47 in
each other’s nearest neighbours, out of a vocabulary of 901K
types, computed over all 30 test instances. On average, the
cosine similarity between these vectors is 0.7. Among the
90 total comparisons between the 3 vectors for the 30 target
terms, there were 59 cases where both target term vectors
were each other’s nearest neighbour (65.6%), with a greater
cosine similarity to each other than to any of the other 901K
words in the vocabulary. This is an impressive score with a
vocabulary of almost a million words. The best-performing
Wiki model, with a lower frequency cutoff (vicipaedia-c20-
d400) achieves a similar average rank among a vocabulary
of 30.4K types, and 51% of comparisons have rank 1 con-
sistency. The cosine similarities are lower, though (0.55).
On their synonym detection task for Classical Latin, Sprug-
noli et al. (2019) achieve an accuracy of 86.9%, but here,
the model only needs to choose between four alternative
words, instead of almost 1 million. Furthermore, we observe
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Term ~a1 NNs ~a2 NNs

genus
1 essentialis demonstrabilia
2 metaphysica quidditative
3 substantialitas universaha

conceptus
1 expucetur possibiles
2 demonstrabilia universaliores
3 universaha aliquee

Table 3: Qualitative examination of some nearest neigh-
bours of target term vectors computed over two different
context sentences of those terms.

that for the bamman-c50-d400 model, the average rank of
a target term vector from the background model among the
nearest neighbours of the learned Neo-Latin vector for that
same term is 50,737 with a cosine similarity of 0.41. This
shows that the model does learn from the Neo-Latin data,
deviating from the background vector, and does not achieve
consistency simply by learning nothing consistently.
Generally, we see in Table 2 that a lower word frequency
cutoff (keeping a larger vocabulary) leads to more consis-
tent results. All of this indicates that more background data
leads to more consistent vectors on our Neo-Latin data.
The Vicipaedia-based models slightly outperform the Latin
Text Library-based models, despite their smaller vocabulary.
This shows that data size is not the only factor — similarity
to our target domain may also be relevant here, as Vicipaedia
data may be closer to Neo-Latin scientific text than the con-
tents of the Latin Text Library. Lastly, the models based on
the small Classical Latin treebanks perform worst, a corpus
that is not only small but also highly varied.
These results show that the Bamman models lead to more
consistent embeddings on our data, even though they are
based on rather noisy data. We have a closer look at this
result by cherry-picking some examples. Table 3 shows the
three nearest neighbours for two vectors each for the target
terms genus (kind) and conceptus (concept). ~a1 is trained
over the first context sentence for this term from our dataset,
and ~a2 over the second. For genus, most of these look rea-
sonable — certainly, essentialis (essential), quidditative (re-
lating to the essence of someone or something) and substan-
tialitas (the quality of being substantial or having substance)
are semantically related to genus in the context of the mathe-
matical method. Universaha, while related, is an OCR error
(universalia (universals)). In this case, the two vectors are
also each other’s nearest neighbours, so the results for this
term are consistent. The nearest neighbours of conceptus,
on the other hand, are not a very good result. To start, the
additive model initialization from the background model for
conceptus ~a1 has as its nearest neighbours the words sd-
bygoogle, ı̀bygoogic and digfeedbygoogle, clearly Google
Books artifacts. After training, the nearest neighbours are
as listed in Table 3: they have improved compared to the
initial additive vector’s neighbours and are now vaguely on-
topic, but still full of OCR errors. This shows that consistent
results are not necessarily of high quality in other respects.

5. Discussion
Our definitional dataset evaluation has shown that
Nonce2Vec can learn Latin word embeddings from a sin-

gle definitional sentence, though slightly less well than it
can for English. This is likely because the task of training
a DS model is harder on Latin text due to the highly in-
flectional nature of the language and the smaller size of the
Latin Wikipedia. There is less statistical evidence for the
usage patterns of more different word forms.
Our Neo-Latin evaluation has shown that Nonce2Vec can
consistently learn Neo-Latin word embeddings for terms
relevant to a certain concept (i.e. the mathematical method),
without access to a background corpus from this domain
and without tuning on the consistency metric or Neo-Latin
data. The evaluation demonstrates that this method can be
used even when nothing but a limited number of sentences
is available for the target domain. This is likely due to trans-
fer of word usage information from the general-domain
background corpus to the domain-specific sentence context,
caused by the way in which Nonce2Vec initializes vectors
based on a background corpus. At least two factors may
affect the outcome: the size of the background corpus, and
how similar it is to Neo-Latin text. Since lack of high-quality
corpora in the relevant domain and lack of expert ground
truths are typical features of research in low-resource set-
tings, the relevance of our result becomes clear. It is useful
in such settings to know that Nonce2Vec learns even from
very tiny Neo-Latin corpora – corpuscula –, as long as back-
ground corpora are available, and that the latter can even be
(a) in a different variety of the same language (b) noisy, as
long as they are large. Based on this finding, tools that allow
information retrieval and visualization using DS models (e.g.
BolVis, van Wierst et al. (2018)) can be developed for Latin
and applied to digital versions of the relevant texts, in order
to find passages relevant to particular research questions in
the history of ideas (Ginammi et al., 2020).
Clearly, however, to the aim of addressing our research ques-
tion on the mathematical method with appropriate scholarly
precision, high-quality Neo-Latin word embeddings based
on data that is relevant to our concept of interest will be
necessary. We encountered several issues related to the mor-
phology of Latin. Among the target terms automatically ex-
tracted from Wikipedia, there were many proper names, as
they are less affected by morphology. They occur more fre-
quently in their lemma form and are more likely to pass fre-
quency cutoffs. Other Wikipedia lemmas are not frequently
used in their lemma form in natural text. In our Neo-Latin
dataset, multiple sentences containing the same word form
are scarce for the same reason — important terms can be
inflected in many ways and each form will get a distinct vec-
tor in a standard Word2vec model. Lemmatization has been
shown to improve language model performance on highly
inflected languages. (Cotterell et al., 2018).
For this reason, Sprugnoli et al. (2019) used lemma embed-
dings instead of word embeddings. They were able to do this
by having a manually lemmatized corpus. For Nonce2Vec,
to create lemma embeddings, any background corpus used
would have to be lemmatized. Of the corpora we used,
only the small treebank corpora that mostly contain Clas-
sical Latin contained lemmatization, and none of the better-
performing larger corpora exist in lemmatized form. While
lemmatizers exist (see Eger et al. (2015) for an overview and
evaluation on medieval church Latin) evaluation is costly
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and results may vary across different varieties of Latin. Still,
for our type of research questions lemmatization carries nat-
ural benefits, because, as philosophers focussing on mean-
ing change and concept drift, we are interested in studying
concepts independently of the morphological variants of the
terms expressing them. In future work, the issue could be
addressed with an extrinsic evaluation on our tasks and eval-
uation across Latin varieties in the context of the EvaLatin
shared task (Sprugnoli and Passarotti, 2020).

Despite impressive consistency scores, we also saw that
other aspects of the quality of these embeddings may be
lacking. Using the top-scoring Bamman model for initial-
ization, we observe many OCR errors among the nearest
neighbours of our learned Neo-Latin vectors. This is cause
for concern, as Word2vec models based on this same data
have already been used in a study of concepts in the works
of Cassiodorus (Bjerva and Praet, 2015). We must therefore
consider in what ways our evaluation is incomplete. The
consistency evaluation does not capture all aspects of em-
bedding quality: after all, a model can be consistently bad
as well as consistently good. The definitional evaluation we
conducted is only grounded in a larger Word2vec model (the
background model) which has not been evaluated for Latin.
We also cannot just assume that this model works well on
Latin just because it works well on English — as illustrated
by the fact that in most of our experiments, the English pa-
rameter settings did not perform well on the Latin data. This
uncertainty leads us to propose an additional evaluation that
is directly grounded in domain expert knowledge, to test
whether the learned Neo-Latin word embeddings are not
only consistent, but also conceptually sound.

5.1. Grounding the evaluation

To identify whether the word embeddings are consistently
good or consistently bad, we need to evaluate them by com-
paring the domain expert’s knowledge of the philosophi-
cal data with the embeddings. In Meyer et al. (2019), we
propose a first step towards this form of evaluation for a
20th century English corpus of the philosophical works of
Quine. For this corpus, we semi-formally defined the re-
lations of some key terms to other terms (e.g., in Quine’s
oeuvre, denotation signifies a relation between a general
term in language and (physical) objects in the ontology). By
defining these interrelations between terms in the corpus,
the expert knowledge of the meaning of a term within the
corpus is reflected by how the term relates to other terms. In
the case of our Neo-Latin corpus, the domain expert identi-
fied that definitio (definition) and axioma (axiom) are func-
tional synonyms of principium (principle). Similar to the
task discussed above, to successfully complete this task, the
cosine distance of the vector of a given target term has to
be nearer to the vectors of their functional synonyms than
alternative terms. In the case of principium, definitio and
axioma, the cosine distance of the vectors of these terms are
expected to be nearer to each other than to other terms. Such
a conceptual evaluation grounded in expert knowledge pro-
vides a method to evaluate word embeddings intrinsically
and, thereby, the quality of their consistency.

5.2. Conclusion
Our results show that consistent Neo-Latin word embed-
dings can be learned by using methods that are designed
to handle tiny data. These methods have not been applied
to Latin before. Nonce2Vec might be a good DS model to
use in such low-resource settings, although further evalua-
tion and refinement is necessary, in particular in the context
of humanities research. In addition, we demonstrate and
discuss evaluation methods appropriate for our task. Using
both a grounded evaluation and a consistency evaluation can
tell us to what extent the learned vectors represent the con-
ceptual distinctions we are interested in, and to what extent
they can be learned consistently from the same text source.
We have great plans for the future. We are actively digitizing
a comparable German and Neo-Latin corpus of philosoph-
ical works. We seek to cooperate with existing initiatives
and intend to add value to available collections. For e.g. the
Bamman corpus this will entail improving the overall text
quality by applying fully automatic OCR post-correction as
provided by Text-Induced Corpus Clean-up or TICCL (Rey-
naert, 2010). To equip TICCL for appropriately handling
Latin, we will apply the TICCLAT method (Reynaert et al.,
2019) for linking morphologically related word forms to
each other, to their diachronic and their known typographi-
cal variants. This follows from our observation that there is
much room for improvements in embedding quality by hav-
ing lemmatized and cleaned datasets and background cor-
pora. Tiny data methods can also be further explored, as re-
cent work incorporating a notion of informativity and more
incrementality into Nonce2Vec (Kabbach et al., 2019) and
recent context-based approaches outperforming Nonce2Vec
on the English definitional dataset (e.g. Schick and Schütze
(2019)) was not explored here. Having high-quality embed-
dings learned from historical text, and downstream appli-
cations that make use of them, will help us in obtaining
large-scale evidence for research questions in the history of
ideas that is impossible to obtain otherwise.
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Appendix: Neo-Latin evaluation dataset
We here present the Neo-Latin evaluation dataset, non-
preprocessed for legibility. Best scores are shown. Prove-
nances of the snippets are documented in the metadata to
the online distribution of the experimental data.8 Shown are
smaller excerpts of the longer snippets in the actual dataset.

8https://github.com/bloemj/nonce2vec/
tree/nonce2vec-latin

https://github.com/bloemj/nonce2vec/tree/nonce2vec-latin
https://github.com/bloemj/nonce2vec/tree/nonce2vec-latin
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