
Proceedings of the Third Workshop on Multilingual Surface Realisation (MSR’20), pages 30–34
Barcelona, Spain (Online), December 12, 2020.

30

ADAPT at SR’20: How Preprocessing and Data Augmentation Help to
Improve Surface Realization

Henry Elder
ADAPT Centre

Dublin City University
henry.elder@adaptcentre.ie

Abstract

In this paper, we describe the ADAPT submission to the Surface Realization Shared Task 2020.
We present a neural-based system trained on the English Web Treebank and an augmented dataset,
automatically created from existing text corpora.

1 Introduction

Surface realization is the final step of an NLG system (Reiter and Dale, 2000). The prior steps provide
guidance on the content and structure of a sentence that is to be generated. The goal of this shared task is
to generate sentences from structured data with high accuracy (Mille et al., 2020). Once this goal has been
achieved, we believe neural-based surface realization systems could be incorporated into real-world NLG
systems, such as task-oriented dialogue systems (Balakrishnan et al., 2019) and personalised marketing
systems1

2 System Description

We made a submission to the Surface Realization Shared Task 2020, for the English language dataset:
Universal Dependencies English Web Treebank (Silveira et al., 2014). We use a neural-based system; a
sequence-to-sequence model trained on linearized trees. We submitted test outputs to both the open and
closed tracks. For the open track we trained the same system on a large augmented dataset.

2.1 Data Preprocessing

Ablation analysis performed on our previous systems (Elder and Hokamp, 2018; Elder et al., 2020)
showed that much of the performance comes from different preprocessing steps we apply to the original
CoNLLU formatted data.

Figure 1 contains a formatted example of a linearized tree that is used as the input sequence when
training the model. The output sequence used is the tokenized form of the original sentence. Below, we
discuss the four key preprocessing features we use. More details can be found in the Python module used
for preprocessing2; for each feature we point to the relevant lines of code in footnotes.

Depth First Linearizations To get the input sequence from a tree, we perform a depth first search of
the tree3. This provides us with a linear sequence of tokens. Where a parent token has multiple child
tokens, we choose randomly between the children. To ensure our system is robust to the order of the
linearization, we obtain multiple random linearizations of each sentence to train the system with.

1For example https://phrasee.co/ and https://www.persado.com/
This work is licensed under a Creative Commons Attribution 4.0 International License. License details:

http://creativecommons.org/licenses/by/4.0/.
2https://github.com/Henry-E/surface-realization-shallow-task/blob/master/modules/

create_source_and_target.py
3https://github.com/Henry-E/surface-realization-shallow-task/blob/master/modules/

create_source_and_target.py\#L12-L36
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come￨VBZ￨1￨0￨root￨_
    _(￨_￨_￨_￨_￨_
        ap￨NNP￨2￨1￨obl￨_
            _(￨_￨_￨_￨_￨_
                from￨IN￨3￨2￨case￨_
                the￨DT￨4￨2￨det￨_
            )_￨_￨_￨_￨_￨_
        story￨NN￨5￨1￨nsubj￨_
            _(￨_￨_￨_￨_￨_
                this￨DT￨6￨5￨det￨_
            )_￨_￨_￨_￨_￨_
        :￨:￨7￨1￨punct￨+1
    )_￨_￨_￨_￨_￨_
_form_suggestions_￨_￨_￨_￨_￨_
    comes￨VBZ￨1￨_￨_￨_
    aps￨NNP￨2￨_￨_￨_

From the AP comes this story:

Figure 1: A formatted example of the linear input sequence for the sentence From the AP comes this
story:. Token level features appear in the order: Lemma, XPOS, ID, Head, DepRel, Lin.

Scoping Brackets Similar to Konstas et al. (2017), we apply scoping brackets around child nodes. This
provides further indication of the tree structure to the model, despite using a linear sequence as input4.

Token Level Features We append a number of features to each token; XPOS, ID, HEAD, DepRel, Lin.
This enables us to use factored sequence models (Sennrich and Haddow, 2016), which we will discuss in
Section 2.3. To use this modelling feature a special pipe symbol, |, is required between each of the token’s
features5.

Form Suggestions Finally, we address the problem of generating a token’s form when only given its
lemma. To do this, we provide the model with form suggestions6. Form suggestions are a list of possible
forms that other lemmas, with the same XPOS tag, were observed to take. To obtain the form suggestions,
we use the automatically parsed corpus, discussed in Section 2.2, to create a dictionary7. The dictionary is
structured as such: each key is a concatenated lemma and XPOS tag, and the value is a list of possible
forms observed in the automatically parsed corpus8. For example: {“VBN bootstrap”: “bootstrapped”}

2.2 Augmented Dataset

To augment the existing training data we create a dataset by parsing sentences from publicly available
corpora. The two corpora we investigated are Wikitext 103 (Merity et al., 2017) and the CNN stories

4https://github.com/Henry-E/surface-realization-shallow-task/blob/master/modules/
create_source_and_target.py\#L23-L28

5https://github.com/Henry-E/surface-realization-shallow-task/blob/master/modules/
create_source_and_target.py\#L79-L95

6https://github.com/Henry-E/surface-realization-shallow-task/blob/master/modules/
create_source_and_target.py\#L101-L123

7https://github.com/Henry-E/surface-realization-shallow-task/blob/master/modules/
get_form_suggestions.py

8Dictionary: https://github.com/Henry-E/surface-realization-shallow-task/blob/master/
inflection_dicts/18th_october_tests/lemma_form_dict_sorted.json
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portion of the DeepMind Q&A dataset (Hermann et al., 2015).
Each corpus requires some cleaning and formatting, after which they can be sentence tokenized using

CoreNLP (Manning et al., 2014). Sentences are filtered by length – min 5 tokens and max 50 – and for
vocabulary overlap with the original training data – set to 80% of tokens in a sentence required to appear
in the original vocabulary. These sentences are then parsed using the Stanford NLP UD parser (Qi et al.,
2018). This leaves us with 2.4 million parsed sentences from the CNN stories corpus and 2.1 million
from Wikitext. To convert a parse tree into the shared task format: word order information is removed by
shuffling the IDs of the parse tree and tokens are lemmatised by removing the form column.

While it has been noted that the use of automatically created data is problematic in NLG tasks —
WeatherGov (Liang et al., 2009) being the notable example — our data is created differently. The
WeatherGov dataset is constructed by pairing a table with the output of a rule-based NLG system. This
means any system trained on WeatherGov only re-learns the rules used to generate the text. Our approach
is the reverse; we parse an existing, naturally occurring sentence, and, thus, the model must learn to
reverse the parsing algorithm.

2.3 Model

The system is trained using a custom fork9 of the OpenNMT-py framework (Klein et al., 2017), the only
change made was to the beam search decoding code. The model used is a bidirectional recurrent neural
network (BRNN) (Schuster and Paliwal, 1997) with long short term memory (LSTM) cells (Hochreiter
and Schmidhuber, 1997). We trained two systems; one with the EWT dataset10 and one with both the EWT
dataset and our augmented dataset11. Hyperparameter details and replication instructions are available
in our project’s repository12, in particular in the config directory. All hyperparameters stayed the same
when training with the augmented dataset, except for vocabulary size and training time. Vocabulary size
varies based on the datasets in use. It is determined by using any tokens which appears 10 times or more.
When training on the EWT dataset, the vocabulary size is 2,193 tokens, training is done for 38 epochs and
takes about 1 hour on two Nvidia 1080 Ti GPUs. For the combined EWT, Wikitext and CNN datasets the
vocabulary size is 89,233, training time increases to around 2 days, and uses 60 random linearizations
of the EWT dataset and 8 of the Wikitext and CNN datasets. The best performing checkpoint on the
development set is chosen for testing.

Our system uses three non-standard modelling features, each of which performs a key function for the
task:

Copy Attention Copy attention (Vinyals et al., 2015; See et al., 2017) gives models the ability to copy
a token directly from the source sequence to the generated text, even if that token does not appear in the
source vocabulary. Vocabularies are usually limited based on available data or computational constraints,
so it’s likely that at least some words the model sees during testing may not have been added to the
vocabulary during training.

Factored Sequence Models Factored sequence models (Sennrich and Haddow, 2016) permit token
level features to be used as part of training. The key idea is to create a separate embedding representation
for each feature type, and to concatenate the embeddings to each token embedding to create a dense
representation13.

Restricted Beam Search In an attempt to reduce unnecessary errors during decoding, our beam search
looks at the input sequence and restricts the available vocabulary to only tokens from the input, and tokens
which have not yet appeared in the output sequence. This is similar to the approach used by King and
White (2018).

9https://github.com/Henry-E/OpenNMT-py
10EWT Only Hyperparameters: https://github.com/Henry-E/surface-realization-shallow-task/

blob/master/configs/srst_2020/baseline_ewt.json\#L38-L62
11Augmented Data Hyperparameters: https://github.com/Henry-E/surface-realization-shallow-task/

blob/master/configs/srst_2020/all_together.json\#L43-L67
12https://github.com/Henry-E/surface-realization-shallow-task
13See Elder and Hokamp (2018) for more details
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BLEU NIST DIST
EWT 80.4 13.47 85.5
+ Augmented Corpora 87.5 13.81 90.35

Table 1: SR’20 EWT Test set results - Automated Evaluation metrics

3 Results

In this section we report our results on the shared task. An explanation of the evaluation methodology, as
well as a comparison with other participants, can be found in the shared task description paper (Mille et
al., 2020).

Table 1 contains automated evaluation metrics on the EWT test set. As in previous experiments (Elder
et al., 2020), we find that the augmented dataset greatly improves the performance of our system.

System Ave. Ave. z n N
EWT + Augmented Corpora 75.7 0.426 797 913
HUMAN 75.7 0.417 669 1,402
EWT 72.5 0.32 830 953

Table 2: SR’20 Test set results - Human Evaluation: Readability
System Ave. Ave. z n N
EWT + Augmented Corpora 92.6 0.54 1,698 1,931
EWT 90.7 0.476 1,685 1,914

Table 3: SR’20 Test set results - Human Evaluation: Meaning Similarity

Table 2 contains human evaluation results for the readability metric. Rather surprisingly, the readability
for our system with the augmented corpora is almost equivalent to the readability of the original human
text. However, the readability metric only reflects how well written the annotators deemed a sentence to
be. Readability scores don’t take into account whether the generated sentence has managed to capture the
meaning of the original sentence.

Table 3 contains human evaluation results for the meaning similarity metric. This metric describes how
successful the system has been at generating sentences with the same meaning as the original sentence.
Sentences generated by the augmented corpora are on average 92.6% similar in meaning to the original
sentence. While this may seem like a strong result14, ultimately we are aiming for 100% meaning
similarity in order to have a system that is reliable enough to be used with real world NLG systems.
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