@inproceedings{bouscarrat-etal-2020-multilingual,
title = "Multilingual enrichment of disease biomedical ontologies",
author = "Bouscarrat, L{\'e}o and
Bonnefoy, Antoine and
Capponi, C{\'e}cile and
Ramisch, Carlos",
editor = "Melero, Maite",
booktitle = "Proceedings of the LREC 2020 Workshop on Multilingual Biomedical Text Processing (MultilingualBIO 2020)",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.multilingualbio-1.4",
pages = "21--28",
abstract = "Translating biomedical ontologies is an important challenge, but doing it manually requires much time and money. We study the possibility to use open-source knowledge bases to translate biomedical ontologies. We focus on two aspects: coverage and quality. We look at the coverage of two biomedical ontologies focusing on diseases with respect to Wikidata for 9 European languages (Czech, Dutch, English, French, German, Italian, Polish, Portuguese and Spanish) for both, plus Arabic, Chinese and Russian for the second. We first use direct links between Wikidata and the studied ontologies and then use second-order links by going through other intermediate ontologies. We then compare the quality of the translations obtained thanks to Wikidata with a commercial machine translation tool, here Google Cloud Translation.",
language = "English",
ISBN = "979-10-95546-65-8",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bouscarrat-etal-2020-multilingual">
<titleInfo>
<title>Multilingual enrichment of disease biomedical ontologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Léo</namePart>
<namePart type="family">Bouscarrat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antoine</namePart>
<namePart type="family">Bonnefoy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cécile</namePart>
<namePart type="family">Capponi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Ramisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the LREC 2020 Workshop on Multilingual Biomedical Text Processing (MultilingualBIO 2020)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maite</namePart>
<namePart type="family">Melero</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-65-8</identifier>
</relatedItem>
<abstract>Translating biomedical ontologies is an important challenge, but doing it manually requires much time and money. We study the possibility to use open-source knowledge bases to translate biomedical ontologies. We focus on two aspects: coverage and quality. We look at the coverage of two biomedical ontologies focusing on diseases with respect to Wikidata for 9 European languages (Czech, Dutch, English, French, German, Italian, Polish, Portuguese and Spanish) for both, plus Arabic, Chinese and Russian for the second. We first use direct links between Wikidata and the studied ontologies and then use second-order links by going through other intermediate ontologies. We then compare the quality of the translations obtained thanks to Wikidata with a commercial machine translation tool, here Google Cloud Translation.</abstract>
<identifier type="citekey">bouscarrat-etal-2020-multilingual</identifier>
<location>
<url>https://aclanthology.org/2020.multilingualbio-1.4</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>21</start>
<end>28</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multilingual enrichment of disease biomedical ontologies
%A Bouscarrat, Léo
%A Bonnefoy, Antoine
%A Capponi, Cécile
%A Ramisch, Carlos
%Y Melero, Maite
%S Proceedings of the LREC 2020 Workshop on Multilingual Biomedical Text Processing (MultilingualBIO 2020)
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-65-8
%G English
%F bouscarrat-etal-2020-multilingual
%X Translating biomedical ontologies is an important challenge, but doing it manually requires much time and money. We study the possibility to use open-source knowledge bases to translate biomedical ontologies. We focus on two aspects: coverage and quality. We look at the coverage of two biomedical ontologies focusing on diseases with respect to Wikidata for 9 European languages (Czech, Dutch, English, French, German, Italian, Polish, Portuguese and Spanish) for both, plus Arabic, Chinese and Russian for the second. We first use direct links between Wikidata and the studied ontologies and then use second-order links by going through other intermediate ontologies. We then compare the quality of the translations obtained thanks to Wikidata with a commercial machine translation tool, here Google Cloud Translation.
%U https://aclanthology.org/2020.multilingualbio-1.4
%P 21-28
Markdown (Informal)
[Multilingual enrichment of disease biomedical ontologies](https://aclanthology.org/2020.multilingualbio-1.4) (Bouscarrat et al., MultilingualBIO 2020)
ACL
- Léo Bouscarrat, Antoine Bonnefoy, Cécile Capponi, and Carlos Ramisch. 2020. Multilingual enrichment of disease biomedical ontologies. In Proceedings of the LREC 2020 Workshop on Multilingual Biomedical Text Processing (MultilingualBIO 2020), pages 21–28, Marseille, France. European Language Resources Association.