@inproceedings{stamou-etal-2020-vmwe,
title = "{VMWE} discovery: a comparative analysis between Literature and {T}witter Corpora",
author = "Stamou, Vivian and
Xylogianni, Artemis and
Malli, Marilena and
Takorou, Penny and
Markantonatou, Stella",
editor = "Markantonatou, Stella and
McCrae, John and
Mitrovi{\'c}, Jelena and
Tiberius, Carole and
Ramisch, Carlos and
Vaidya, Ashwini and
Osenova, Petya and
Savary, Agata",
booktitle = "Proceedings of the Joint Workshop on Multiword Expressions and Electronic Lexicons",
month = dec,
year = "2020",
address = "online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.mwe-1.8",
pages = "66--72",
abstract = "We evaluate manually five lexical association measurements as regards the discovery of Modern Greek verb multiword expressions with two or more lexicalised components usingmwetoolkit3 (Ramisch et al., 2010). We use Twitter corpora and compare our findings with previous work on fiction corpora. The results of LL, MLE and T-score were found to overlap significantly in both the fiction and the Twitter corpora, while the results of PMI and Dice do not. We find that MWEs with two lexicalised components are more frequent in Twitter than in fiction corpora and that lean syntactic patterns help retrieve them more efficiently than richer ones. Our work (i) supports the enrichment of the lexicographical database for Modern Greek MWEs{'} IDION{'} (Markantonatou et al., 2019) and (ii) highlights aspects of the usage of five association measurements on specific text genres for best MWE discovery results.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="stamou-etal-2020-vmwe">
<titleInfo>
<title>VMWE discovery: a comparative analysis between Literature and Twitter Corpora</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vivian</namePart>
<namePart type="family">Stamou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Artemis</namePart>
<namePart type="family">Xylogianni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marilena</namePart>
<namePart type="family">Malli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Penny</namePart>
<namePart type="family">Takorou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stella</namePart>
<namePart type="family">Markantonatou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Joint Workshop on Multiword Expressions and Electronic Lexicons</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stella</namePart>
<namePart type="family">Markantonatou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">McCrae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jelena</namePart>
<namePart type="family">Mitrović</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carole</namePart>
<namePart type="family">Tiberius</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Ramisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashwini</namePart>
<namePart type="family">Vaidya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Petya</namePart>
<namePart type="family">Osenova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Agata</namePart>
<namePart type="family">Savary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We evaluate manually five lexical association measurements as regards the discovery of Modern Greek verb multiword expressions with two or more lexicalised components usingmwetoolkit3 (Ramisch et al., 2010). We use Twitter corpora and compare our findings with previous work on fiction corpora. The results of LL, MLE and T-score were found to overlap significantly in both the fiction and the Twitter corpora, while the results of PMI and Dice do not. We find that MWEs with two lexicalised components are more frequent in Twitter than in fiction corpora and that lean syntactic patterns help retrieve them more efficiently than richer ones. Our work (i) supports the enrichment of the lexicographical database for Modern Greek MWEs’ IDION’ (Markantonatou et al., 2019) and (ii) highlights aspects of the usage of five association measurements on specific text genres for best MWE discovery results.</abstract>
<identifier type="citekey">stamou-etal-2020-vmwe</identifier>
<location>
<url>https://aclanthology.org/2020.mwe-1.8</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>66</start>
<end>72</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T VMWE discovery: a comparative analysis between Literature and Twitter Corpora
%A Stamou, Vivian
%A Xylogianni, Artemis
%A Malli, Marilena
%A Takorou, Penny
%A Markantonatou, Stella
%Y Markantonatou, Stella
%Y McCrae, John
%Y Mitrović, Jelena
%Y Tiberius, Carole
%Y Ramisch, Carlos
%Y Vaidya, Ashwini
%Y Osenova, Petya
%Y Savary, Agata
%S Proceedings of the Joint Workshop on Multiword Expressions and Electronic Lexicons
%D 2020
%8 December
%I Association for Computational Linguistics
%C online
%F stamou-etal-2020-vmwe
%X We evaluate manually five lexical association measurements as regards the discovery of Modern Greek verb multiword expressions with two or more lexicalised components usingmwetoolkit3 (Ramisch et al., 2010). We use Twitter corpora and compare our findings with previous work on fiction corpora. The results of LL, MLE and T-score were found to overlap significantly in both the fiction and the Twitter corpora, while the results of PMI and Dice do not. We find that MWEs with two lexicalised components are more frequent in Twitter than in fiction corpora and that lean syntactic patterns help retrieve them more efficiently than richer ones. Our work (i) supports the enrichment of the lexicographical database for Modern Greek MWEs’ IDION’ (Markantonatou et al., 2019) and (ii) highlights aspects of the usage of five association measurements on specific text genres for best MWE discovery results.
%U https://aclanthology.org/2020.mwe-1.8
%P 66-72
Markdown (Informal)
[VMWE discovery: a comparative analysis between Literature and Twitter Corpora](https://aclanthology.org/2020.mwe-1.8) (Stamou et al., MWE 2020)
ACL