@inproceedings{fadaee-monz-2020-unreasonable,
title = "The Unreasonable Volatility of Neural Machine Translation Models",
author = "Fadaee, Marzieh and
Monz, Christof",
editor = "Birch, Alexandra and
Finch, Andrew and
Hayashi, Hiroaki and
Heafield, Kenneth and
Junczys-Dowmunt, Marcin and
Konstas, Ioannis and
Li, Xian and
Neubig, Graham and
Oda, Yusuke",
booktitle = "Proceedings of the Fourth Workshop on Neural Generation and Translation",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.ngt-1.10",
doi = "10.18653/v1/2020.ngt-1.10",
pages = "88--96",
abstract = "Recent works have shown that Neural Machine Translation (NMT) models achieve impressive performance, however, questions about understanding the behavior of these models remain unanswered. We investigate the unexpected volatility of NMT models where the input is semantically and syntactically correct. We discover that with trivial modifications of source sentences, we can identify cases where \textit{unexpected changes} happen in the translation and in the worst case lead to mistranslations. This volatile behavior of translating extremely similar sentences in surprisingly different ways highlights the underlying generalization problem of current NMT models. We find that both RNN and Transformer models display volatile behavior in 26{\%} and 19{\%} of sentence variations, respectively.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fadaee-monz-2020-unreasonable">
<titleInfo>
<title>The Unreasonable Volatility of Neural Machine Translation Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marzieh</namePart>
<namePart type="family">Fadaee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Neural Generation and Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Birch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Finch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroaki</namePart>
<namePart type="family">Hayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenneth</namePart>
<namePart type="family">Heafield</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcin</namePart>
<namePart type="family">Junczys-Dowmunt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ioannis</namePart>
<namePart type="family">Konstas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xian</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">Neubig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Oda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent works have shown that Neural Machine Translation (NMT) models achieve impressive performance, however, questions about understanding the behavior of these models remain unanswered. We investigate the unexpected volatility of NMT models where the input is semantically and syntactically correct. We discover that with trivial modifications of source sentences, we can identify cases where unexpected changes happen in the translation and in the worst case lead to mistranslations. This volatile behavior of translating extremely similar sentences in surprisingly different ways highlights the underlying generalization problem of current NMT models. We find that both RNN and Transformer models display volatile behavior in 26% and 19% of sentence variations, respectively.</abstract>
<identifier type="citekey">fadaee-monz-2020-unreasonable</identifier>
<identifier type="doi">10.18653/v1/2020.ngt-1.10</identifier>
<location>
<url>https://aclanthology.org/2020.ngt-1.10</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>88</start>
<end>96</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Unreasonable Volatility of Neural Machine Translation Models
%A Fadaee, Marzieh
%A Monz, Christof
%Y Birch, Alexandra
%Y Finch, Andrew
%Y Hayashi, Hiroaki
%Y Heafield, Kenneth
%Y Junczys-Dowmunt, Marcin
%Y Konstas, Ioannis
%Y Li, Xian
%Y Neubig, Graham
%Y Oda, Yusuke
%S Proceedings of the Fourth Workshop on Neural Generation and Translation
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F fadaee-monz-2020-unreasonable
%X Recent works have shown that Neural Machine Translation (NMT) models achieve impressive performance, however, questions about understanding the behavior of these models remain unanswered. We investigate the unexpected volatility of NMT models where the input is semantically and syntactically correct. We discover that with trivial modifications of source sentences, we can identify cases where unexpected changes happen in the translation and in the worst case lead to mistranslations. This volatile behavior of translating extremely similar sentences in surprisingly different ways highlights the underlying generalization problem of current NMT models. We find that both RNN and Transformer models display volatile behavior in 26% and 19% of sentence variations, respectively.
%R 10.18653/v1/2020.ngt-1.10
%U https://aclanthology.org/2020.ngt-1.10
%U https://doi.org/10.18653/v1/2020.ngt-1.10
%P 88-96
Markdown (Informal)
[The Unreasonable Volatility of Neural Machine Translation Models](https://aclanthology.org/2020.ngt-1.10) (Fadaee & Monz, NGT 2020)
ACL