@inproceedings{rieger-etal-2020-toward,
title = "Toward Natural Language Mitigation Strategies for Cognitive Biases in Recommender Systems",
author = {Rieger, Alisa and
Theune, Mari{\"e}t and
Tintarev, Nava},
editor = "Alonso, Jose M. and
Catala, Alejandro",
booktitle = "2nd Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence",
month = nov,
year = "2020",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.nl4xai-1.11",
pages = "50--54",
abstract = "Cognitive biases in the context of consuming online information filtered by recommender systems may lead to sub-optimal choices. One approach to mitigate such biases is through interface and interaction design. This survey reviews studies focused on cognitive bias mitigation of recommender system users during two processes: 1) item selection and 2) preference elicitation. It highlights a number of promising directions for Natural Language Generation research for mitigating cognitive bias including: the need for personalization, as well as for transparency and control.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rieger-etal-2020-toward">
<titleInfo>
<title>Toward Natural Language Mitigation Strategies for Cognitive Biases in Recommender Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alisa</namePart>
<namePart type="family">Rieger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mariët</namePart>
<namePart type="family">Theune</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nava</namePart>
<namePart type="family">Tintarev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>2nd Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jose</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Alonso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alejandro</namePart>
<namePart type="family">Catala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Cognitive biases in the context of consuming online information filtered by recommender systems may lead to sub-optimal choices. One approach to mitigate such biases is through interface and interaction design. This survey reviews studies focused on cognitive bias mitigation of recommender system users during two processes: 1) item selection and 2) preference elicitation. It highlights a number of promising directions for Natural Language Generation research for mitigating cognitive bias including: the need for personalization, as well as for transparency and control.</abstract>
<identifier type="citekey">rieger-etal-2020-toward</identifier>
<location>
<url>https://aclanthology.org/2020.nl4xai-1.11</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>50</start>
<end>54</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Toward Natural Language Mitigation Strategies for Cognitive Biases in Recommender Systems
%A Rieger, Alisa
%A Theune, Mariët
%A Tintarev, Nava
%Y Alonso, Jose M.
%Y Catala, Alejandro
%S 2nd Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence
%D 2020
%8 November
%I Association for Computational Linguistics
%C Dublin, Ireland
%F rieger-etal-2020-toward
%X Cognitive biases in the context of consuming online information filtered by recommender systems may lead to sub-optimal choices. One approach to mitigate such biases is through interface and interaction design. This survey reviews studies focused on cognitive bias mitigation of recommender system users during two processes: 1) item selection and 2) preference elicitation. It highlights a number of promising directions for Natural Language Generation research for mitigating cognitive bias including: the need for personalization, as well as for transparency and control.
%U https://aclanthology.org/2020.nl4xai-1.11
%P 50-54
Markdown (Informal)
[Toward Natural Language Mitigation Strategies for Cognitive Biases in Recommender Systems](https://aclanthology.org/2020.nl4xai-1.11) (Rieger et al., NL4XAI 2020)
ACL