@inproceedings{delbrouck-etal-2020-modulated,
title = "Modulated Fusion using Transformer for Linguistic-Acoustic Emotion Recognition",
author = "Delbrouck, Jean-Benoit and
Tits, No{\'e} and
Dupont, St{\'e}phane",
editor = "Castellucci, Giuseppe and
Filice, Simone and
Poria, Soujanya and
Cambria, Erik and
Specia, Lucia",
booktitle = "Proceedings of the First International Workshop on Natural Language Processing Beyond Text",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.nlpbt-1.1",
doi = "10.18653/v1/2020.nlpbt-1.1",
pages = "1--10",
abstract = "This paper aims to bring a new lightweight yet powerful solution for the task of Emotion Recognition and Sentiment Analysis. Our motivation is to propose two architectures based on Transformers and modulation that combine the linguistic and acoustic inputs from a wide range of datasets to challenge, and sometimes surpass, the state-of-the-art in the field. To demonstrate the efficiency of our models, we carefully evaluate their performances on the IEMOCAP, MOSI, MOSEI and MELD dataset. The experiments can be directly replicated and the code is fully open for future researches.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="delbrouck-etal-2020-modulated">
<titleInfo>
<title>Modulated Fusion using Transformer for Linguistic-Acoustic Emotion Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jean-Benoit</namePart>
<namePart type="family">Delbrouck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noé</namePart>
<namePart type="family">Tits</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stéphane</namePart>
<namePart type="family">Dupont</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First International Workshop on Natural Language Processing Beyond Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Castellucci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simone</namePart>
<namePart type="family">Filice</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soujanya</namePart>
<namePart type="family">Poria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">Cambria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper aims to bring a new lightweight yet powerful solution for the task of Emotion Recognition and Sentiment Analysis. Our motivation is to propose two architectures based on Transformers and modulation that combine the linguistic and acoustic inputs from a wide range of datasets to challenge, and sometimes surpass, the state-of-the-art in the field. To demonstrate the efficiency of our models, we carefully evaluate their performances on the IEMOCAP, MOSI, MOSEI and MELD dataset. The experiments can be directly replicated and the code is fully open for future researches.</abstract>
<identifier type="citekey">delbrouck-etal-2020-modulated</identifier>
<identifier type="doi">10.18653/v1/2020.nlpbt-1.1</identifier>
<location>
<url>https://aclanthology.org/2020.nlpbt-1.1</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>1</start>
<end>10</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modulated Fusion using Transformer for Linguistic-Acoustic Emotion Recognition
%A Delbrouck, Jean-Benoit
%A Tits, Noé
%A Dupont, Stéphane
%Y Castellucci, Giuseppe
%Y Filice, Simone
%Y Poria, Soujanya
%Y Cambria, Erik
%Y Specia, Lucia
%S Proceedings of the First International Workshop on Natural Language Processing Beyond Text
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F delbrouck-etal-2020-modulated
%X This paper aims to bring a new lightweight yet powerful solution for the task of Emotion Recognition and Sentiment Analysis. Our motivation is to propose two architectures based on Transformers and modulation that combine the linguistic and acoustic inputs from a wide range of datasets to challenge, and sometimes surpass, the state-of-the-art in the field. To demonstrate the efficiency of our models, we carefully evaluate their performances on the IEMOCAP, MOSI, MOSEI and MELD dataset. The experiments can be directly replicated and the code is fully open for future researches.
%R 10.18653/v1/2020.nlpbt-1.1
%U https://aclanthology.org/2020.nlpbt-1.1
%U https://doi.org/10.18653/v1/2020.nlpbt-1.1
%P 1-10
Markdown (Informal)
[Modulated Fusion using Transformer for Linguistic-Acoustic Emotion Recognition](https://aclanthology.org/2020.nlpbt-1.1) (Delbrouck et al., nlpbt 2020)
ACL