@inproceedings{wang-etal-2020-cord,
title = "{CORD-19}: The {COVID-19} Open Research Dataset",
author = "Wang, Lucy Lu and
Lo, Kyle and
Chandrasekhar, Yoganand and
Reas, Russell and
Yang, Jiangjiang and
Burdick, Doug and
Eide, Darrin and
Funk, Kathryn and
Katsis, Yannis and
Kinney, Rodney Michael and
Li, Yunyao and
Liu, Ziyang and
Merrill, William and
Mooney, Paul and
Murdick, Dewey A. and
Rishi, Devvret and
Sheehan, Jerry and
Shen, Zhihong and
Stilson, Brandon and
Wade, Alex D. and
Wang, Kuansan and
Wang, Nancy Xin Ru and
Wilhelm, Christopher and
Xie, Boya and
Raymond, Douglas M. and
Weld, Daniel S. and
Etzioni, Oren and
Kohlmeier, Sebastian",
booktitle = "Proceedings of the 1st Workshop on {NLP} for {COVID-19} at {ACL} 2020",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.nlpcovid19-acl.1",
abstract = "The COVID-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on COVID-19 and related historical coronavirus research. CORD-19 is designed to facilitate the development of text mining and information retrieval systems over its rich collection of metadata and structured full text papers. Since its release, CORD-19 has been downloaded over 200K times and has served as the basis of many COVID-19 text mining and discovery systems. In this article, we describe the mechanics of dataset construction, highlighting challenges and key design decisions, provide an overview of how CORD-19 has been used, and describe several shared tasks built around the dataset. We hope this resource will continue to bring together the computing community, biomedical experts, and policy makers in the search for effective treatments and management policies for COVID-19.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2020-cord">
<titleInfo>
<title>CORD-19: The COVID-19 Open Research Dataset</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lucy</namePart>
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyle</namePart>
<namePart type="family">Lo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoganand</namePart>
<namePart type="family">Chandrasekhar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Russell</namePart>
<namePart type="family">Reas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiangjiang</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Doug</namePart>
<namePart type="family">Burdick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Darrin</namePart>
<namePart type="family">Eide</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kathryn</namePart>
<namePart type="family">Funk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yannis</namePart>
<namePart type="family">Katsis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rodney</namePart>
<namePart type="given">Michael</namePart>
<namePart type="family">Kinney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunyao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ziyang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Merrill</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Mooney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dewey</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Murdick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Devvret</namePart>
<namePart type="family">Rishi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jerry</namePart>
<namePart type="family">Sheehan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhihong</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brandon</namePart>
<namePart type="family">Stilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Wade</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kuansan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nancy</namePart>
<namePart type="given">Xin</namePart>
<namePart type="given">Ru</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Wilhelm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Boya</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Douglas</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Raymond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Weld</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oren</namePart>
<namePart type="family">Etzioni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Kohlmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The COVID-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on COVID-19 and related historical coronavirus research. CORD-19 is designed to facilitate the development of text mining and information retrieval systems over its rich collection of metadata and structured full text papers. Since its release, CORD-19 has been downloaded over 200K times and has served as the basis of many COVID-19 text mining and discovery systems. In this article, we describe the mechanics of dataset construction, highlighting challenges and key design decisions, provide an overview of how CORD-19 has been used, and describe several shared tasks built around the dataset. We hope this resource will continue to bring together the computing community, biomedical experts, and policy makers in the search for effective treatments and management policies for COVID-19.</abstract>
<identifier type="citekey">wang-etal-2020-cord</identifier>
<location>
<url>https://aclanthology.org/2020.nlpcovid19-acl.1</url>
</location>
<part>
<date>2020-07</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CORD-19: The COVID-19 Open Research Dataset
%A Wang, Lucy Lu
%A Lo, Kyle
%A Chandrasekhar, Yoganand
%A Reas, Russell
%A Yang, Jiangjiang
%A Burdick, Doug
%A Eide, Darrin
%A Funk, Kathryn
%A Katsis, Yannis
%A Kinney, Rodney Michael
%A Li, Yunyao
%A Liu, Ziyang
%A Merrill, William
%A Mooney, Paul
%A Murdick, Dewey A.
%A Rishi, Devvret
%A Sheehan, Jerry
%A Shen, Zhihong
%A Stilson, Brandon
%A Wade, Alex D.
%A Wang, Kuansan
%A Wang, Nancy Xin Ru
%A Wilhelm, Christopher
%A Xie, Boya
%A Raymond, Douglas M.
%A Weld, Daniel S.
%A Etzioni, Oren
%A Kohlmeier, Sebastian
%S Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F wang-etal-2020-cord
%X The COVID-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on COVID-19 and related historical coronavirus research. CORD-19 is designed to facilitate the development of text mining and information retrieval systems over its rich collection of metadata and structured full text papers. Since its release, CORD-19 has been downloaded over 200K times and has served as the basis of many COVID-19 text mining and discovery systems. In this article, we describe the mechanics of dataset construction, highlighting challenges and key design decisions, provide an overview of how CORD-19 has been used, and describe several shared tasks built around the dataset. We hope this resource will continue to bring together the computing community, biomedical experts, and policy makers in the search for effective treatments and management policies for COVID-19.
%U https://aclanthology.org/2020.nlpcovid19-acl.1
Markdown (Informal)
[CORD-19: The COVID-19 Open Research Dataset](https://aclanthology.org/2020.nlpcovid19-acl.1) (Wang et al., NLP-COVID19 2020)
ACL
- Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas, Jiangjiang Yang, Doug Burdick, Darrin Eide, Kathryn Funk, Yannis Katsis, Rodney Michael Kinney, Yunyao Li, Ziyang Liu, William Merrill, Paul Mooney, Dewey A. Murdick, Devvret Rishi, Jerry Sheehan, Zhihong Shen, Brandon Stilson, et al.. 2020. CORD-19: The COVID-19 Open Research Dataset. In Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020, Online. Association for Computational Linguistics.