@inproceedings{medina-serrano-etal-2020-nlp,
title = "{NLP}-based Feature Extraction for the Detection of {COVID}-19 Misinformation Videos on {Y}ou{T}ube",
author = "Medina Serrano, Juan Carlos and
Papakyriakopoulos, Orestis and
Hegelich, Simon",
booktitle = "Proceedings of the 1st Workshop on {NLP} for {COVID-19} at {ACL} 2020",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.nlpcovid19-acl.17",
abstract = "We present a simple NLP methodology for detecting COVID-19 misinformation videos on YouTube by leveraging user comments. We use transfer learning pre-trained models to generate a multi-label classifier that can categorize conspiratorial content. We use the percentage of misinformation comments on each video as a new feature for video classification.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="medina-serrano-etal-2020-nlp">
<titleInfo>
<title>NLP-based Feature Extraction for the Detection of COVID-19 Misinformation Videos on YouTube</title>
</titleInfo>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="given">Carlos</namePart>
<namePart type="family">Medina Serrano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orestis</namePart>
<namePart type="family">Papakyriakopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Hegelich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a simple NLP methodology for detecting COVID-19 misinformation videos on YouTube by leveraging user comments. We use transfer learning pre-trained models to generate a multi-label classifier that can categorize conspiratorial content. We use the percentage of misinformation comments on each video as a new feature for video classification.</abstract>
<identifier type="citekey">medina-serrano-etal-2020-nlp</identifier>
<location>
<url>https://aclanthology.org/2020.nlpcovid19-acl.17</url>
</location>
<part>
<date>2020-07</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NLP-based Feature Extraction for the Detection of COVID-19 Misinformation Videos on YouTube
%A Medina Serrano, Juan Carlos
%A Papakyriakopoulos, Orestis
%A Hegelich, Simon
%S Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F medina-serrano-etal-2020-nlp
%X We present a simple NLP methodology for detecting COVID-19 misinformation videos on YouTube by leveraging user comments. We use transfer learning pre-trained models to generate a multi-label classifier that can categorize conspiratorial content. We use the percentage of misinformation comments on each video as a new feature for video classification.
%U https://aclanthology.org/2020.nlpcovid19-acl.17
Markdown (Informal)
[NLP-based Feature Extraction for the Detection of COVID-19 Misinformation Videos on YouTube](https://aclanthology.org/2020.nlpcovid19-acl.17) (Medina Serrano et al., NLP-COVID19 2020)
ACL