@inproceedings{gala-etal-2020-analyzing,
title = "Analyzing Gender Bias within Narrative Tropes",
author = "Gala, Dhruvil and
Khursheed, Mohammad Omar and
Lerner, Hannah and
O{'}Connor, Brendan and
Iyyer, Mohit",
editor = "Bamman, David and
Hovy, Dirk and
Jurgens, David and
O'Connor, Brendan and
Volkova, Svitlana",
booktitle = "Proceedings of the Fourth Workshop on Natural Language Processing and Computational Social Science",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.nlpcss-1.23/",
doi = "10.18653/v1/2020.nlpcss-1.23",
pages = "212--217",
abstract = "Popular media reflects and reinforces societal biases through the use of tropes, which are narrative elements, such as archetypal characters and plot arcs, that occur frequently across media. In this paper, we specifically investigate gender bias within a large collection of tropes. To enable our study, we crawl tvtropes.org, an online user-created repository that contains 30K tropes associated with 1.9M examples of their occurrences across film, television, and literature. We automatically score the {\textquotedblleft}genderedness{\textquotedblright} of each trope in our TVTROPES dataset, which enables an analysis of (1) highly-gendered topics within tropes, (2) the relationship between gender bias and popular reception, and (3) how the gender of a work`s creator correlates with the types of tropes that they use."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gala-etal-2020-analyzing">
<titleInfo>
<title>Analyzing Gender Bias within Narrative Tropes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dhruvil</namePart>
<namePart type="family">Gala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Omar</namePart>
<namePart type="family">Khursheed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hannah</namePart>
<namePart type="family">Lerner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brendan</namePart>
<namePart type="family">O’Connor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Iyyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Natural Language Processing and Computational Social Science</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Bamman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dirk</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brendan</namePart>
<namePart type="family">O’Connor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Svitlana</namePart>
<namePart type="family">Volkova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Popular media reflects and reinforces societal biases through the use of tropes, which are narrative elements, such as archetypal characters and plot arcs, that occur frequently across media. In this paper, we specifically investigate gender bias within a large collection of tropes. To enable our study, we crawl tvtropes.org, an online user-created repository that contains 30K tropes associated with 1.9M examples of their occurrences across film, television, and literature. We automatically score the “genderedness” of each trope in our TVTROPES dataset, which enables an analysis of (1) highly-gendered topics within tropes, (2) the relationship between gender bias and popular reception, and (3) how the gender of a work‘s creator correlates with the types of tropes that they use.</abstract>
<identifier type="citekey">gala-etal-2020-analyzing</identifier>
<identifier type="doi">10.18653/v1/2020.nlpcss-1.23</identifier>
<location>
<url>https://aclanthology.org/2020.nlpcss-1.23/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>212</start>
<end>217</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analyzing Gender Bias within Narrative Tropes
%A Gala, Dhruvil
%A Khursheed, Mohammad Omar
%A Lerner, Hannah
%A O’Connor, Brendan
%A Iyyer, Mohit
%Y Bamman, David
%Y Hovy, Dirk
%Y Jurgens, David
%Y O’Connor, Brendan
%Y Volkova, Svitlana
%S Proceedings of the Fourth Workshop on Natural Language Processing and Computational Social Science
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F gala-etal-2020-analyzing
%X Popular media reflects and reinforces societal biases through the use of tropes, which are narrative elements, such as archetypal characters and plot arcs, that occur frequently across media. In this paper, we specifically investigate gender bias within a large collection of tropes. To enable our study, we crawl tvtropes.org, an online user-created repository that contains 30K tropes associated with 1.9M examples of their occurrences across film, television, and literature. We automatically score the “genderedness” of each trope in our TVTROPES dataset, which enables an analysis of (1) highly-gendered topics within tropes, (2) the relationship between gender bias and popular reception, and (3) how the gender of a work‘s creator correlates with the types of tropes that they use.
%R 10.18653/v1/2020.nlpcss-1.23
%U https://aclanthology.org/2020.nlpcss-1.23/
%U https://doi.org/10.18653/v1/2020.nlpcss-1.23
%P 212-217
Markdown (Informal)
[Analyzing Gender Bias within Narrative Tropes](https://aclanthology.org/2020.nlpcss-1.23/) (Gala et al., NLP+CSS 2020)
ACL
- Dhruvil Gala, Mohammad Omar Khursheed, Hannah Lerner, Brendan O’Connor, and Mohit Iyyer. 2020. Analyzing Gender Bias within Narrative Tropes. In Proceedings of the Fourth Workshop on Natural Language Processing and Computational Social Science, pages 212–217, Online. Association for Computational Linguistics.