@inproceedings{blokker-etal-2020-swimming,
title = "Swimming with the Tide? Positional Claim Detection across Political Text Types",
author = "Blokker, Nico and
Dayanik, Erenay and
Lapesa, Gabriella and
Pad{\'o}, Sebastian",
editor = "Bamman, David and
Hovy, Dirk and
Jurgens, David and
O'Connor, Brendan and
Volkova, Svitlana",
booktitle = "Proceedings of the Fourth Workshop on Natural Language Processing and Computational Social Science",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.nlpcss-1.3",
doi = "10.18653/v1/2020.nlpcss-1.3",
pages = "24--34",
abstract = "Manifestos are official documents of political parties, providing a comprehensive topical overview of the electoral programs. Voters, however, seldom read them and often prefer other channels, such as newspaper articles, to understand the party positions on various policy issues. The natural question to ask is how compatible these two formats (manifesto and newspaper reports) are in their representation of party positioning. We address this question with an approach that combines political science (manual annotation and analysis) and natural language processing (supervised claim identification) in a cross-text type setting: we train a classifier on annotated newspaper data and test its performance on manifestos. Our findings show a) strong performance for supervised classification even across text types and b) a substantive overlap between the two formats in terms of party positioning, with differences regarding the salience of specific issues.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="blokker-etal-2020-swimming">
<titleInfo>
<title>Swimming with the Tide? Positional Claim Detection across Political Text Types</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nico</namePart>
<namePart type="family">Blokker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erenay</namePart>
<namePart type="family">Dayanik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriella</namePart>
<namePart type="family">Lapesa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Padó</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Natural Language Processing and Computational Social Science</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Bamman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dirk</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brendan</namePart>
<namePart type="family">O’Connor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Svitlana</namePart>
<namePart type="family">Volkova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Manifestos are official documents of political parties, providing a comprehensive topical overview of the electoral programs. Voters, however, seldom read them and often prefer other channels, such as newspaper articles, to understand the party positions on various policy issues. The natural question to ask is how compatible these two formats (manifesto and newspaper reports) are in their representation of party positioning. We address this question with an approach that combines political science (manual annotation and analysis) and natural language processing (supervised claim identification) in a cross-text type setting: we train a classifier on annotated newspaper data and test its performance on manifestos. Our findings show a) strong performance for supervised classification even across text types and b) a substantive overlap between the two formats in terms of party positioning, with differences regarding the salience of specific issues.</abstract>
<identifier type="citekey">blokker-etal-2020-swimming</identifier>
<identifier type="doi">10.18653/v1/2020.nlpcss-1.3</identifier>
<location>
<url>https://aclanthology.org/2020.nlpcss-1.3</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>24</start>
<end>34</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Swimming with the Tide? Positional Claim Detection across Political Text Types
%A Blokker, Nico
%A Dayanik, Erenay
%A Lapesa, Gabriella
%A Padó, Sebastian
%Y Bamman, David
%Y Hovy, Dirk
%Y Jurgens, David
%Y O’Connor, Brendan
%Y Volkova, Svitlana
%S Proceedings of the Fourth Workshop on Natural Language Processing and Computational Social Science
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F blokker-etal-2020-swimming
%X Manifestos are official documents of political parties, providing a comprehensive topical overview of the electoral programs. Voters, however, seldom read them and often prefer other channels, such as newspaper articles, to understand the party positions on various policy issues. The natural question to ask is how compatible these two formats (manifesto and newspaper reports) are in their representation of party positioning. We address this question with an approach that combines political science (manual annotation and analysis) and natural language processing (supervised claim identification) in a cross-text type setting: we train a classifier on annotated newspaper data and test its performance on manifestos. Our findings show a) strong performance for supervised classification even across text types and b) a substantive overlap between the two formats in terms of party positioning, with differences regarding the salience of specific issues.
%R 10.18653/v1/2020.nlpcss-1.3
%U https://aclanthology.org/2020.nlpcss-1.3
%U https://doi.org/10.18653/v1/2020.nlpcss-1.3
%P 24-34
Markdown (Informal)
[Swimming with the Tide? Positional Claim Detection across Political Text Types](https://aclanthology.org/2020.nlpcss-1.3) (Blokker et al., NLP+CSS 2020)
ACL