@inproceedings{neumann-etal-2020-utility,
title = "On the Utility of Audiovisual Dialog Technologies and Signal Analytics for Real-time Remote Monitoring of Depression Biomarkers",
author = "Neumann, Michael and
Roessler, Oliver and
Suendermann-Oeft, David and
Ramanarayanan, Vikram",
editor = "Bhatia, Parminder and
Lin, Steven and
Gangadharaiah, Rashmi and
Wallace, Byron and
Shafran, Izhak and
Shivade, Chaitanya and
Du, Nan and
Diab, Mona",
booktitle = "Proceedings of the First Workshop on Natural Language Processing for Medical Conversations",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.nlpmc-1.7",
doi = "10.18653/v1/2020.nlpmc-1.7",
pages = "47--52",
abstract = "We investigate the utility of audiovisual dialog systems combined with speech and video analytics for real-time remote monitoring of depression at scale in uncontrolled environment settings. We collected audiovisual conversational data from participants who interacted with a cloud-based multimodal dialog system, and automatically extracted a large set of speech and vision metrics based on the rich existing literature of laboratory studies. We report on the efficacy of various audio and video metrics in differentiating people with mild, moderate and severe depression, and discuss the implications of these results for the deployment of such technologies in real-world neurological diagnosis and monitoring applications.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="neumann-etal-2020-utility">
<titleInfo>
<title>On the Utility of Audiovisual Dialog Technologies and Signal Analytics for Real-time Remote Monitoring of Depression Biomarkers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Neumann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oliver</namePart>
<namePart type="family">Roessler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Suendermann-Oeft</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vikram</namePart>
<namePart type="family">Ramanarayanan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Natural Language Processing for Medical Conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Parminder</namePart>
<namePart type="family">Bhatia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Gangadharaiah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Byron</namePart>
<namePart type="family">Wallace</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Izhak</namePart>
<namePart type="family">Shafran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chaitanya</namePart>
<namePart type="family">Shivade</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nan</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mona</namePart>
<namePart type="family">Diab</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate the utility of audiovisual dialog systems combined with speech and video analytics for real-time remote monitoring of depression at scale in uncontrolled environment settings. We collected audiovisual conversational data from participants who interacted with a cloud-based multimodal dialog system, and automatically extracted a large set of speech and vision metrics based on the rich existing literature of laboratory studies. We report on the efficacy of various audio and video metrics in differentiating people with mild, moderate and severe depression, and discuss the implications of these results for the deployment of such technologies in real-world neurological diagnosis and monitoring applications.</abstract>
<identifier type="citekey">neumann-etal-2020-utility</identifier>
<identifier type="doi">10.18653/v1/2020.nlpmc-1.7</identifier>
<location>
<url>https://aclanthology.org/2020.nlpmc-1.7</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>47</start>
<end>52</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On the Utility of Audiovisual Dialog Technologies and Signal Analytics for Real-time Remote Monitoring of Depression Biomarkers
%A Neumann, Michael
%A Roessler, Oliver
%A Suendermann-Oeft, David
%A Ramanarayanan, Vikram
%Y Bhatia, Parminder
%Y Lin, Steven
%Y Gangadharaiah, Rashmi
%Y Wallace, Byron
%Y Shafran, Izhak
%Y Shivade, Chaitanya
%Y Du, Nan
%Y Diab, Mona
%S Proceedings of the First Workshop on Natural Language Processing for Medical Conversations
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F neumann-etal-2020-utility
%X We investigate the utility of audiovisual dialog systems combined with speech and video analytics for real-time remote monitoring of depression at scale in uncontrolled environment settings. We collected audiovisual conversational data from participants who interacted with a cloud-based multimodal dialog system, and automatically extracted a large set of speech and vision metrics based on the rich existing literature of laboratory studies. We report on the efficacy of various audio and video metrics in differentiating people with mild, moderate and severe depression, and discuss the implications of these results for the deployment of such technologies in real-world neurological diagnosis and monitoring applications.
%R 10.18653/v1/2020.nlpmc-1.7
%U https://aclanthology.org/2020.nlpmc-1.7
%U https://doi.org/10.18653/v1/2020.nlpmc-1.7
%P 47-52
Markdown (Informal)
[On the Utility of Audiovisual Dialog Technologies and Signal Analytics for Real-time Remote Monitoring of Depression Biomarkers](https://aclanthology.org/2020.nlpmc-1.7) (Neumann et al., NLPMC 2020)
ACL