@inproceedings{asgari-etal-2020-topic,
title = "Topic-Based Measures of Conversation for Detecting Mild {C}ognitive{I}mpairment",
author = "Asgari, Meysam and
Chen, Liu and
Dodge, Hiroko",
editor = "Bhatia, Parminder and
Lin, Steven and
Gangadharaiah, Rashmi and
Wallace, Byron and
Shafran, Izhak and
Shivade, Chaitanya and
Du, Nan and
Diab, Mona",
booktitle = "Proceedings of the First Workshop on Natural Language Processing for Medical Conversations",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.nlpmc-1.9/",
doi = "10.18653/v1/2020.nlpmc-1.9",
pages = "63--67",
abstract = "Conversation is a complex cognitive task that engages multiple aspects of cognitive functions to remember the discussed topics, monitor the semantic and linguistic elements, and recognize others' emotions. In this paper, we propose a computational method based on the lexical coherence of consecutive utterances to quantify topical variations in semi-structured conversations of older adults with cognitive impairments. Extracting the lexical knowledge of conversational utterances, our method generate a set of novel conversational measures that indicate underlying cognitive deficits among subjects with mild cognitive impairment (MCI). Our preliminary results verifies the utility of the proposed conversation-based measures in distinguishing MCI from healthy controls."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="asgari-etal-2020-topic">
<titleInfo>
<title>Topic-Based Measures of Conversation for Detecting Mild CognitiveImpairment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Meysam</namePart>
<namePart type="family">Asgari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroko</namePart>
<namePart type="family">Dodge</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Natural Language Processing for Medical Conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Parminder</namePart>
<namePart type="family">Bhatia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Gangadharaiah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Byron</namePart>
<namePart type="family">Wallace</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Izhak</namePart>
<namePart type="family">Shafran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chaitanya</namePart>
<namePart type="family">Shivade</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nan</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mona</namePart>
<namePart type="family">Diab</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Conversation is a complex cognitive task that engages multiple aspects of cognitive functions to remember the discussed topics, monitor the semantic and linguistic elements, and recognize others’ emotions. In this paper, we propose a computational method based on the lexical coherence of consecutive utterances to quantify topical variations in semi-structured conversations of older adults with cognitive impairments. Extracting the lexical knowledge of conversational utterances, our method generate a set of novel conversational measures that indicate underlying cognitive deficits among subjects with mild cognitive impairment (MCI). Our preliminary results verifies the utility of the proposed conversation-based measures in distinguishing MCI from healthy controls.</abstract>
<identifier type="citekey">asgari-etal-2020-topic</identifier>
<identifier type="doi">10.18653/v1/2020.nlpmc-1.9</identifier>
<location>
<url>https://aclanthology.org/2020.nlpmc-1.9/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>63</start>
<end>67</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Topic-Based Measures of Conversation for Detecting Mild CognitiveImpairment
%A Asgari, Meysam
%A Chen, Liu
%A Dodge, Hiroko
%Y Bhatia, Parminder
%Y Lin, Steven
%Y Gangadharaiah, Rashmi
%Y Wallace, Byron
%Y Shafran, Izhak
%Y Shivade, Chaitanya
%Y Du, Nan
%Y Diab, Mona
%S Proceedings of the First Workshop on Natural Language Processing for Medical Conversations
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F asgari-etal-2020-topic
%X Conversation is a complex cognitive task that engages multiple aspects of cognitive functions to remember the discussed topics, monitor the semantic and linguistic elements, and recognize others’ emotions. In this paper, we propose a computational method based on the lexical coherence of consecutive utterances to quantify topical variations in semi-structured conversations of older adults with cognitive impairments. Extracting the lexical knowledge of conversational utterances, our method generate a set of novel conversational measures that indicate underlying cognitive deficits among subjects with mild cognitive impairment (MCI). Our preliminary results verifies the utility of the proposed conversation-based measures in distinguishing MCI from healthy controls.
%R 10.18653/v1/2020.nlpmc-1.9
%U https://aclanthology.org/2020.nlpmc-1.9/
%U https://doi.org/10.18653/v1/2020.nlpmc-1.9
%P 63-67
Markdown (Informal)
[Topic-Based Measures of Conversation for Detecting Mild CognitiveImpairment](https://aclanthology.org/2020.nlpmc-1.9/) (Asgari et al., NLPMC 2020)
ACL