@inproceedings{cheng-duan-2020-chinese,
title = "{C}hinese Grammatical Error Detection Based on {BERT} Model",
author = "Cheng, Yong and
Duan, Mofan",
editor = "YANG, Erhong and
XUN, Endong and
ZHANG, Baolin and
RAO, Gaoqi",
booktitle = "Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educational Applications",
month = dec,
year = "2020",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.nlptea-1.15",
pages = "108--113",
abstract = "Automatic grammatical error correction is of great value in assisting second language writing. In 2020, the shared task for Chinese grammatical error diagnosis(CGED) was held in NLP-TEA. As the LDU team, we participated the competition and submitted the final results. Our work mainly focused on grammatical error detection, that is, to judge whether a sentence contains grammatical errors. We used the BERT pre-trained model for binary classification, and we achieve 0.0391 in FPR track, ranking the second in all teams. In error detection track, the accuracy, recall and F-1 of our submitted result are 0.9851, 0.7496 and 0.8514 respectively.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cheng-duan-2020-chinese">
<titleInfo>
<title>Chinese Grammatical Error Detection Based on BERT Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yong</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mofan</namePart>
<namePart type="family">Duan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Erhong</namePart>
<namePart type="family">YANG</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Endong</namePart>
<namePart type="family">XUN</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Baolin</namePart>
<namePart type="family">ZHANG</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaoqi</namePart>
<namePart type="family">RAO</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic grammatical error correction is of great value in assisting second language writing. In 2020, the shared task for Chinese grammatical error diagnosis(CGED) was held in NLP-TEA. As the LDU team, we participated the competition and submitted the final results. Our work mainly focused on grammatical error detection, that is, to judge whether a sentence contains grammatical errors. We used the BERT pre-trained model for binary classification, and we achieve 0.0391 in FPR track, ranking the second in all teams. In error detection track, the accuracy, recall and F-1 of our submitted result are 0.9851, 0.7496 and 0.8514 respectively.</abstract>
<identifier type="citekey">cheng-duan-2020-chinese</identifier>
<location>
<url>https://aclanthology.org/2020.nlptea-1.15</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>108</start>
<end>113</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Chinese Grammatical Error Detection Based on BERT Model
%A Cheng, Yong
%A Duan, Mofan
%Y YANG, Erhong
%Y XUN, Endong
%Y ZHANG, Baolin
%Y RAO, Gaoqi
%S Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educational Applications
%D 2020
%8 December
%I Association for Computational Linguistics
%C Suzhou, China
%F cheng-duan-2020-chinese
%X Automatic grammatical error correction is of great value in assisting second language writing. In 2020, the shared task for Chinese grammatical error diagnosis(CGED) was held in NLP-TEA. As the LDU team, we participated the competition and submitted the final results. Our work mainly focused on grammatical error detection, that is, to judge whether a sentence contains grammatical errors. We used the BERT pre-trained model for binary classification, and we achieve 0.0391 in FPR track, ranking the second in all teams. In error detection track, the accuracy, recall and F-1 of our submitted result are 0.9851, 0.7496 and 0.8514 respectively.
%U https://aclanthology.org/2020.nlptea-1.15
%P 108-113
Markdown (Informal)
[Chinese Grammatical Error Detection Based on BERT Model](https://aclanthology.org/2020.nlptea-1.15) (Cheng & Duan, NLP-TEA 2020)
ACL