@inproceedings{luo-etal-2020-chinese,
title = "{C}hinese Grammatical Error Diagnosis with Graph Convolution Network and Multi-task Learning",
author = "Luo, Yikang and
Bao, Zuyi and
Li, Chen and
Wang, Rui",
editor = "YANG, Erhong and
XUN, Endong and
ZHANG, Baolin and
RAO, Gaoqi",
booktitle = "Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educational Applications",
month = dec,
year = "2020",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.nlptea-1.6",
pages = "44--48",
abstract = "This paper describes our participating system on the Chinese Grammatical Error Diagnosis (CGED) 2020 shared task. For the detection subtask, we propose two BERT-based approaches 1) with syntactic dependency trees enhancing the model performance and 2) under the multi-task learning framework to combine the sequence labeling and the sequence-to-sequence (seq2seq) models. For the correction subtask, we utilize the masked language model, the seq2seq model and the spelling check model to generate corrections based on the detection results. Finally, our system achieves the highest recall rate on the top-3 correction and the second best F1 score on identification level and position level.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="luo-etal-2020-chinese">
<titleInfo>
<title>Chinese Grammatical Error Diagnosis with Graph Convolution Network and Multi-task Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yikang</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zuyi</namePart>
<namePart type="family">Bao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Erhong</namePart>
<namePart type="family">YANG</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Endong</namePart>
<namePart type="family">XUN</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Baolin</namePart>
<namePart type="family">ZHANG</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaoqi</namePart>
<namePart type="family">RAO</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our participating system on the Chinese Grammatical Error Diagnosis (CGED) 2020 shared task. For the detection subtask, we propose two BERT-based approaches 1) with syntactic dependency trees enhancing the model performance and 2) under the multi-task learning framework to combine the sequence labeling and the sequence-to-sequence (seq2seq) models. For the correction subtask, we utilize the masked language model, the seq2seq model and the spelling check model to generate corrections based on the detection results. Finally, our system achieves the highest recall rate on the top-3 correction and the second best F1 score on identification level and position level.</abstract>
<identifier type="citekey">luo-etal-2020-chinese</identifier>
<location>
<url>https://aclanthology.org/2020.nlptea-1.6</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>44</start>
<end>48</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Chinese Grammatical Error Diagnosis with Graph Convolution Network and Multi-task Learning
%A Luo, Yikang
%A Bao, Zuyi
%A Li, Chen
%A Wang, Rui
%Y YANG, Erhong
%Y XUN, Endong
%Y ZHANG, Baolin
%Y RAO, Gaoqi
%S Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educational Applications
%D 2020
%8 December
%I Association for Computational Linguistics
%C Suzhou, China
%F luo-etal-2020-chinese
%X This paper describes our participating system on the Chinese Grammatical Error Diagnosis (CGED) 2020 shared task. For the detection subtask, we propose two BERT-based approaches 1) with syntactic dependency trees enhancing the model performance and 2) under the multi-task learning framework to combine the sequence labeling and the sequence-to-sequence (seq2seq) models. For the correction subtask, we utilize the masked language model, the seq2seq model and the spelling check model to generate corrections based on the detection results. Finally, our system achieves the highest recall rate on the top-3 correction and the second best F1 score on identification level and position level.
%U https://aclanthology.org/2020.nlptea-1.6
%P 44-48
Markdown (Informal)
[Chinese Grammatical Error Diagnosis with Graph Convolution Network and Multi-task Learning](https://aclanthology.org/2020.nlptea-1.6) (Luo et al., NLP-TEA 2020)
ACL