






Figure 2: Effect of number of instances of target type
on length for referring expressions (top) and captions
(bottom) (points jittered).

ing them at a rate of 26.3%.

5 Conclusion

This comparison has shown that referring expres-
sions and captions are subject to very different
pressures with respect to informativity. When
there is only a single instance of a given type (or
only one instance that is visually salient), then it
suffices to refer to it using ‘the [noun]’, where
‘[noun]’ identifies the type. A caption, on the
other hand, is there to tell someone about the ob-
ject, so descriptive detail is more likely to be added
even when it does not help to identify the referent.

But captions are not systematically longer than
referring expressions, either. Descriptive modi-
fiers will be added to a referring expression when
they serve the purpose of distinguishing the ref-
erent from other ones, i.e., when they are infor-
mative. This is why expressions referring to ob-
jects of a type that is multiply instantiated within
a scene tend to be longer. A caption and the corre-
sponding referring expression may also be equally
long, but the kind of information they contain is
different: a caption is more likely to contain infor-
mation that does not help to discriminate among
the possible referents. Relational vocabulary is for
distinguishing among referents.

We hope that these findings will enable image
captioning datasets to be leveraged more effec-
tively in systems for generating expressions that

Caption: ‘red and white plane’
Ref. Exp.: ‘the plane’

Caption: ‘a polar bear cub’
Ref. Exp.: ‘the bear that’s not getting licked’

Caption: ‘a brown and white horse’
Ref. Exp.: ‘the darker brown horse’

Caption: ‘plane with a propeller on the front’
Ref. Exp.: ‘the airplane in the middle’

Figure 3: Captions versus referring expressions for se-
lected images.
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refer to objects in complex scenes.
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