@inproceedings{ramesh-kashyap-kan-2020-sciwing,
title = "{S}ci{WING}{--} A Software Toolkit for Scientific Document Processing",
author = "Ramesh Kashyap, Abhinav and
Kan, Min-Yen",
editor = "Chandrasekaran, Muthu Kumar and
de Waard, Anita and
Feigenblat, Guy and
Freitag, Dayne and
Ghosal, Tirthankar and
Hovy, Eduard and
Knoth, Petr and
Konopnicki, David and
Mayr, Philipp and
Patton, Robert M. and
Shmueli-Scheuer, Michal",
booktitle = "Proceedings of the First Workshop on Scholarly Document Processing",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.sdp-1.13/",
doi = "10.18653/v1/2020.sdp-1.13",
pages = "113--120",
abstract = "We introduce SciWING, an open-source soft-ware toolkit which provides access to state-of-the-art pre-trained models for scientific document processing (SDP) tasks, such as citation string parsing, logical structure recovery and citation intent classification. Compared to other toolkits, SciWING follows a full neural pipeline and provides a Python inter-face for SDP. When needed, SciWING provides fine-grained control for rapid experimentation with different models by swapping and stacking different modules. Transfer learning from general and scientific documents specific pre-trained transformers (i.e., BERT, SciBERT, etc.) can be performed. SciWING incorporates ready-to-use web and terminal-based applications and demonstrations to aid adoption and development. The toolkit is available from \url{http://sciwing.io} and the demos are available at \url{http://rebrand.ly/sciwing-demo}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ramesh-kashyap-kan-2020-sciwing">
<titleInfo>
<title>SciWING– A Software Toolkit for Scientific Document Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abhinav</namePart>
<namePart type="family">Ramesh Kashyap</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Scholarly Document Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Muthu</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Chandrasekaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anita</namePart>
<namePart type="family">de Waard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Feigenblat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dayne</namePart>
<namePart type="family">Freitag</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tirthankar</namePart>
<namePart type="family">Ghosal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduard</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Petr</namePart>
<namePart type="family">Knoth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Konopnicki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Mayr</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Patton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michal</namePart>
<namePart type="family">Shmueli-Scheuer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce SciWING, an open-source soft-ware toolkit which provides access to state-of-the-art pre-trained models for scientific document processing (SDP) tasks, such as citation string parsing, logical structure recovery and citation intent classification. Compared to other toolkits, SciWING follows a full neural pipeline and provides a Python inter-face for SDP. When needed, SciWING provides fine-grained control for rapid experimentation with different models by swapping and stacking different modules. Transfer learning from general and scientific documents specific pre-trained transformers (i.e., BERT, SciBERT, etc.) can be performed. SciWING incorporates ready-to-use web and terminal-based applications and demonstrations to aid adoption and development. The toolkit is available from http://sciwing.io and the demos are available at http://rebrand.ly/sciwing-demo.</abstract>
<identifier type="citekey">ramesh-kashyap-kan-2020-sciwing</identifier>
<identifier type="doi">10.18653/v1/2020.sdp-1.13</identifier>
<location>
<url>https://aclanthology.org/2020.sdp-1.13/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>113</start>
<end>120</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SciWING– A Software Toolkit for Scientific Document Processing
%A Ramesh Kashyap, Abhinav
%A Kan, Min-Yen
%Y Chandrasekaran, Muthu Kumar
%Y de Waard, Anita
%Y Feigenblat, Guy
%Y Freitag, Dayne
%Y Ghosal, Tirthankar
%Y Hovy, Eduard
%Y Knoth, Petr
%Y Konopnicki, David
%Y Mayr, Philipp
%Y Patton, Robert M.
%Y Shmueli-Scheuer, Michal
%S Proceedings of the First Workshop on Scholarly Document Processing
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F ramesh-kashyap-kan-2020-sciwing
%X We introduce SciWING, an open-source soft-ware toolkit which provides access to state-of-the-art pre-trained models for scientific document processing (SDP) tasks, such as citation string parsing, logical structure recovery and citation intent classification. Compared to other toolkits, SciWING follows a full neural pipeline and provides a Python inter-face for SDP. When needed, SciWING provides fine-grained control for rapid experimentation with different models by swapping and stacking different modules. Transfer learning from general and scientific documents specific pre-trained transformers (i.e., BERT, SciBERT, etc.) can be performed. SciWING incorporates ready-to-use web and terminal-based applications and demonstrations to aid adoption and development. The toolkit is available from http://sciwing.io and the demos are available at http://rebrand.ly/sciwing-demo.
%R 10.18653/v1/2020.sdp-1.13
%U https://aclanthology.org/2020.sdp-1.13/
%U https://doi.org/10.18653/v1/2020.sdp-1.13
%P 113-120
Markdown (Informal)
[SciWING– A Software Toolkit for Scientific Document Processing](https://aclanthology.org/2020.sdp-1.13/) (Ramesh Kashyap & Kan, sdp 2020)
ACL