


and Gatti, 2014) into the NLP field to make more
complex judgments on feature vectors, or using
MatchPyramid (Pang et al., 2016) to process the
similarity comparison focusing on the similarity
between words.

Task1B of CL-SciSumm is essentially a classi-
fication task. Classification methods are mainly
divided into two parts: Rule-based methods and su-
pervised machine learning methods. Traditional su-
pervised machine learning methods like LR (Logis-
tic Regression) (Park, 2013), Adaboost (Freund and
Schapire, 1997) and XGBoost (Chen and Guestrin,
2016) can be easily applied for this task. Besides,
the neural networks, such as TextCNN (Kim, 2014),
TextRNN (Liu et al., 2016), TextRCNN (Lai et al.,
2015), FastText (Joulin et al., 2016) and Char-
CNN (Zhang et al., 2015), can work directly on
text, and generate dense vectors for classification.

The Task2 of CL-SciSumm and the LongSumm
shared task are both summarization task. Recently,
the research on automatic summarization tasks has
mainly focused on two ways: extractive summa-
rization and abstractive summarization. In the field
of extractive summarization, We studied the sam-
pling process used in DPPs (Kulesza and Taskar,
2012) where we calculated the kernel matrix using
WMD sentence similarity for further sampling (Li
et al., 2018). Zhong et al. (2019) explored how
to make the system generate higher quality sum-
maries. They selected three metrics: network ar-
chitecture, knowledge transfer, and learning mode,
and analyzed the impact of the three metrics on
the quality of summary generation through experi-
ments.

GCN is a powerful neural network framework
processing graph structural data. Defferrard et al.
(2016) extended the traditional CNN to non-
Euclidean space and introduce local spectral fil-
tering to optimize the propagation process during
the training of the standard graph neural network.
Kipf and Welling (2017) further studied the appli-
cation of GCN in semi-supervised classification.
GAT (Veličković et al., 2017) allocates different
weights on different node neighbors to aggregate
information. A document can also be converted
into a graph. Yasunaga et al. (2017) introduced
GCN in multi-document summarization. The clus-
ters of documents were fed into RNN to obtain
intermediate representations. Then GCN continued
to extracting features considering the connections
of documents clusters. At last, each sentence was

Figure 1: The complete process of Task1A.

scored based on its cluster-aware representations,
and sentences with high score were chosen as sum-
maries.

As for abstractive summarization, Rush et al.
(2015) introduced an attention mechanism to the
Seq2Seq model, which enables the model to focus
on words in specific positions in the original text
via the weight matrix when generating abstracts,
thus avoiding the problem of losing too much infor-
mation due to long sentences. Since BERT (Devlin
et al., 2018) has achieved great success in the field
of NLP, the method of pre-training and fine-tuning
has become a new paradigm. Researchers began to
explore how to apply pre-trained models to natural
language generation. At first, researchers tried to
replace the encoder with a pre-trained BERT (Liu
and Lapata, 2019), then more and more pre-training
target functions for the Seq2Seq model were ex-
plored like masked generation (Song et al., 2019),
denoising (Lewis et al., 2019), text-to-text (Raffel
et al., 2019a). Some specially designed tasks for
summarization have also been proposed, such as ex-
tracting gap-sentences (Zhang et al., 2019). We use
the gap-sentence method in (Zhang et al., 2019)
to combine and transform all the data, then utilize
the T5 model (Lewis et al., 2019) to fine-tune and
generate the summary.

3 Method

3.1 CL-SciSumm

3.1.1 Task1A
As shown in Figure 1, the citation linkage task,
Task1A of CL-SciSumm, contains two steps: fea-
ture extraction and content linkage. In the feature
extraction step, we perform similarity calculation
based on different feature extraction ways for each
RT and every CT (Citation Text) in CTS (Citation
Text Spans), where some traditional features will
be used, such as IDF similarity and Jaccard simi-
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Figure 2: The position feature vector in Task1B.

larity. Additionally sentence context information
is used on the basis of these simple features in or-
der to more comprehensively reflect the similarity
information of the sentence. Besides, we also use
the Lin and Jcn features of WordNet, word-cos,
Word vector, and LDA-Jaccard (Li et al., 2019).
LDA-Jaccard performs better than LDA on sparse
topics, and it pays more attention to the union set
of the same topic that both two sentences have. In
the content linkage step, we add all the scores that
each CT belonging to the same CTS, then sort all
RTs by the final scores, and take the first N re-
sults as the final answer of Task1A. We use four
multi-feature fusion methods: Voting-1.2, Voting-
2.1, Jaccard-Focused, and Jaccard-Cascade based
on our last year work (Li et al., 2019) by increasing
the training set and adjusting the hyper-parameters.

3.1.2 Task1B
Our system applies multiple machine learning
methods on multiple features representing different
aspects of CT and RT. Since a scientific paper is
well-structured and each section represents a dif-
ferent facet of the document, our first motivation
is to leverage the position feature of CT and RT
to classify which facet the citation belongs to. As
shown in Figure 2, the position features are the
relative positions of CT and RT, the relative posi-
tions of the sections that CT and RT belong to, and
the section title text. Suppose the section id is sid,
the total amount of sections is tsid, the sentence
id is ssid, and the total amount of sentences is
tssid. Then, the section relative position(SecPos)
of CT or RT is sid/tsid, and the sentence rela-
tive position(SenPos) of CT or RT is ssid/tssid.
Since the section title text(STT ) of CT or RT also
implicates the role it plays in the whole paper, we
leverage TF-IDF to select the top 189 words as the
keywords where each word occurs at least 3 times
in the training set, then convert the section title to
a one-hot vector. Then we train LR, XGBoost, and
Adaboost on the position features.

Next, we focus on the aspect of text content
since the texts of CT and RT indicate the content

Figure 3: The architecture of FastText in Task 1B.

in detail. First, the texts of CT and RT are prepro-
cessed, such as extracting text from XML file, stop
word removal, and word tokenization. Then they
are represented by word embeddings and mapped
to a dense vector space by FastText. The archi-
tecture of FastText is shown in Figure 3 where
x1, x2, ..., xN−1, xN represent the n-gram features
and each feature is the average of word embeddings.
The hidden layer is obtained from the average of
x1, x2, ..., xN−1, xN . Then the output layer is fully
connected to the hidden layer and finally obtain the
predicted label by the hierarchical softmax. The
reason that we choose FastText as our classifier
based on content features is that FastText is rel-
atively lighter than other text classifiers and can
avoid overfitting since the training set is small.

3.1.3 Task2
Task2 is a summarization task, and we apply two
extractive methods in this paper.

Extractive summarization based on DPPs:
This method assumes that each document is a set
of sentences, and the process of extracting the sum-
mary is to extract the highest quality subset from
the set of sentences. To achieve this extraction pro-
cess, we first represent the document as a matrix
L representing the relationship between sentences
and then apply the DPPs sampling algorithm to
extract candidate sentences. The matrix L is con-
structed by the Quality-Diversity (QD) model and
Sent2Vec (SV) model.

In the Quality-Diversity model, matrix L can be
calculated by:

Lij = qiSimijqj

where qi is the quality of each sentence which can
be calculated by the features we selected, such
as Sentence Length (SL), Sentence Position (SP)
and Sentence Coverage (SC). Simij represents the
similarity between sentences, which can be imple-
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Figure 4: Extractive summarization based on GCN in
Task2.

mented as

Simij = ϕT
i ϕj ∈ [0, 1]

where ϕi is the diversity vector of a single sentence.
In the Sent2Vec model, we construct matrix L

by
Lij = BT

i Bj

where B is the sentence vector obtained from the
Sent2Vec model.

By constructing matrix L, we can apply the
DPPs sampling algorithm to select sentences, the
extracted summaries have both high-quality and
low-similarity. The details of DPPs can be referred
to the work of Kulesza and Taskar (2012).

Extractive summarization based on GNN: We
propose an extractive summarization method based
on GCN and GAT (Figure 5). As shown in Figure
4, we first build a sentence relation graph based
on sentence similarity, calculated by cosine simi-
larity. The similarity graph can objectively reflect
the association between sentences, including key-
words and sentence similarity information. The
graphs and low-level sentence representations com-
pressed by GRU are fed into GCN and GAT. Each
node in the undirected graph is a sentence, which is
connected to another sentence if their similarity is
greater than 0.2, and the origin node feature is the
last hidden layer of GRU. Graph convolution can
leverage the feature information of the node itself
and the structure information of the graph. In the
L-layer convolution network, H(l) represents the
hidden features of the lth layer, parameterized by a
weight matrix W (l). And Ã is symmetrically nor-
malized from the graph adjacency matrix A. After
a non-linear function(ReLU), we obtain advanced
representations as the final scoring features.

f(H(l), A) = σ(ÃH(l)W (l))

Figure 5: Left: Multi-head attention (with 3 heads)
computations apply on node 1 and its neighborhood.
~h

′

1 is obtained by concatenating or averaging from
the aggregated features of each head. Right: The
attention mechanism a(W~hi,W~hj), and activated by
LeakyReLU.

Figure 6: T5 is actually a transformer pretrained on the
large corpus. We fine-tuned it for abstractive summa-
rization task.

In the training period, we select the sentences most
similar to the community summary from the RP as
the summary sentences. The selected sentences are
labeled as 1, while the rest sentences are labeled
as 0. Then the model is trained as a binary classi-
fier. Finally, we greedily select the highest-scoring
sentences from the sentence set.

3.2 LongSumm

For the LongSumm shared task, we use three meth-
ods based on our forementioned summarization
methods for Task2 of CL-SciSumm in this paper.

3.2.1 T5 Fine-tuning
Although we have divided the dataset into section-
wise samples and obtain more than 30000 section-
summary pairs, it is still not sufficient to train an ab-
stractive model from scratch. Therefore we use the
pre-training and fine-tuning method to deal with
this problem. As shown in Figure 6, T5 (Raffel
et al., 2019b) is a transformer-liked pre-trained
model that has great performance when transfer
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to a summarization task. It treats every NLP task
as a text-to-text task and does both unsupervised
pre-training and supervised multi-task pre-training
on the large corpus.

3.2.2 DPPs Sampling
This method is based on DPPs sampling, which is
similar to the method in Task2 of the CL-SciSumm
shared task. We utilize two models to construct
matrix L, that is, the Quality-Diversity (QD) model
and the Sent2Vec (SV) model. Then DPPs sam-
pling can automatically select the candidate sen-
tences with high quality.

3.2.3 GRU-GCN/GAT
This method contains two parts: an RNN model
and a GCN/GAT model. When processing the orig-
inal text data, we use GRU to compress the se-
quences. And a similarity graph is constructed for
each sentence group as described in 3.1.3, together
with the sentence representation as sentence node
feature are fed into GCN or GAT. Then we apply
the method of supervised training as a reference
to the binary classification and select the highest-
scored sentences according to the training results.

4 Experiments and Results

4.1 CL-SciSumm

4.1.1 Task1A
In our previous work (Li et al., 2019), we have
extracted many kinds of features through various
methods. In terms of semantic information, the fea-
tures are word vector, word-cos, and Lin and Jcn in
WordNet. Some traditional features are also used
such as IDF and Jaccard similarity, considering
that with the increase of the number of topics in the
LDA model, the topic vector will gradually become
sparse. This time, we abandon LDA and LDA-cos
features and introduce the LDA-Jaccard similarity,
which can improve the discrimination performance
of LDA when the topic vector is sparse and focus
on the similarity in the same topic. Based on the
original fusion method, there are four new fusion
methods by increasing the training set and adjust-
ing the hyper-parameters, which are, Voting-1.2,
Voting-2.1, Jaccard-Focused, and Jaccard-Cascade.

LDA model topic size is set to 600, and the pre-
training word vector size is set to 300. In the case
of high-dimensional LDA, although the word dis-
tribution in the topic becomes very sparse, the per-
formance has been improved. Table 4 shows the

Method Precision Recall F1 Score
V1.2 0.0693 0.2658 0.1100
V2.1 0.0604 0.2308 0.0958

JF 0.0698 0.2650 0.1105
JC 0.0605 0.2331 0.0960

Table 1: Task1A experiment results. V1.2, V2.1,
JF, JC are Voting-1.2, Voting-2.1, Jaccard-Focused,
Jaccard-Cascade respectively.

Facet Proportion
Aim Citation 0.082

Method Citation 0.718
Hypothesis Citation 0.024

Result Citation 0.138
Implication Citation 0.080

Multi-facet 0.074

Table 2: Facet distribution of the training set in
Task1B.

parameter settings of the four multi-feature fusion
methods.

As shown in Table 1, the performance of Jaccard-
Focused is the best among the four methods. At
the same time, there is a big gap between the preci-
sion and the recall rate. It is because we manually
specify that top-N sentences are answers, so the
program finds more sentences in general, so the
recall rate is higher than the precision rate.

4.1.2 Task1B

For XGBoost (POS-XGB), we set the learning rate
to 0.3, max depth to 1; for Adaboost (POS-ADB),
we use the decision tree as the weak learner with
max depth 2, learning rate 0.3; for LR (POS-LR),
we set the learning rate to 0.3. We also implement
a voting method (POS-Vote) based on these base
classifiers. As for FastText (CON-CT-FastText and
CON-RT-FastText) applied on content features, the
CT and RT length are 40 and 50 respectively. The
size of word embedding, hidden layer and output
layer are 128, 256 and 2 respectively. We use Adam
as the optimizer with learning rate 0.0001, and
train for 50 iterations. Finally, we combine the
classifiers on position features and content features
via a voting method (CON-POS-Vote). Both the
vote methods mentioned above obey the majority
rule.

Since Task1B is a multi-label classification task
and the training set is severely imbalanced, as
shown in Table 2, we randomly sample an equal
number of negative samples for each discourse
facet, then train five independent classifiers, re-
spectively. When predicting the test set, we select
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Method Precision Recall F1 Score
POS-ADB 0.3088 0.1439 0.1963
POS-LR 0.3685 0.1813 0.2430

POS-Vote 0.4464 0.1831 0.2597
POS-XGB 0.4660 0.2331 0.3108

CON-CT-FastText 0.4994 0.2047 0.2904
CON-RT-FastText 0.4624 0.1990 0.2783
CON-POS-Vote 0.5533 0.1917 0.2847

Table 3: Task1B experiment results.

at most top 2 facets with the highest probability.
Table 3 shows the results of Task1B. We find that

CON-POS-Vote has the best Precision, while POS-
XGB performs best on Recall and F1 Score. The
performance of FastText based on content features
is better than most of machine learning methods
based on position features. And CTs contain more
information indicating the facet than RT.

4.1.3 Task2
In DPPs sampling, Sentence Length (SL), Sentence
Position (SP), and Sentence Coverage (SC) are se-
lected as features to calculate the quality of sen-
tences, and the summary compression ratio is set
to 20%. For the GCN method, we pick the top
50k words sorted by the frequency from the vo-
cabulary of the original text. We select a sentence
subset with the largest ROUGE score as the target
for extractive summarization. Based on the greedy
algorithm, the sentence with the largest ROUGE
score is taken out one by one as a positive sample
and added to the extractive summary set until the
set cannot increase the score. After cleaning the
RP, we rank the sentences by the output score, and
then the summaries are generated. Table 5 shows
the result on the test set.

From Table5 we can see that GCN based meth-
ods perform better than DPPs on various metrics
of three different gold summaries. It indicates that
end to end supervised learning method can extract
better feature than human, even the supervised sig-
nals are constructed indirectly (we construct extrac-
tive summarization training data from human-write
summarization dataset). Although DPPs performs
well on improving the diversity of summaries, its
ability to evaluate the quality of sentence comes
from handcrafted feature, which generalize worse.

4.2 LongSumm
4.2.1 Data preprocessing
The training data set is composed of abstractive
parts and extractive parts. The abstractive summa-
rization data are from published papers and blogs

which contain around 700 articles with an aver-
age of 31.7 sentences per summary and an aver-
age of 21.6 words per sentence. The extractive
data are from Lev et al. (2019) which have 1705
paper-summary pairs. For each paper, it provides a
summary with 30 sentences and 990 words on av-
erage. The LongSumm shared task is characterized
by long input and output with a high compression
ratio. So we choose a mix-and-divide method to
deal with it:

1. To make full use of all data samples, we mix
abstractive and extractive data.

2. Transform the full paper level summariza-
tion into short document summarization by
dividing all article-summary pairs into section-
summary pairs.

3. Relabel all samples for abstractive models and
extractive models.

The first step is easy to understand. The second
step is achieved as follows: with PDF parser, we
can identify sections in the paper; the highest
Jaccard similarity among all pairs between sec-
tions sentences and summary sentences is used
as section-sentence Jaccard similarity; each sum-
mary sentence is allocated to the section which
has the highest section-sentence Jaccard similarity
with it. Other co-occurrence based metrics like
ROUGE (Gidiotis and Tsoumakas, 2020) or BLEU
can also be applied but we choose jaccard because
of its simplicity(these metrics usually lead to the
same allocation). We get 30230 section-summary
pairs in total. At last, we build two datasets with
different types:

1. For extractive models, sentences in a sec-
tion that have the highest Jaccard similarity
with summary sentences are labeled to be ex-
tracted.

2. For abstractive models, there is no need to
process abstractive samples. Extractive sam-
ples are processed according to Zhang et al.
(2019). For the long section, we use textrank
to extract some sentences as a summary and
exclude these sentences from the section. This
preprocessing trick can prevent the abstractive
model from learning to copy input. For a short
section, we do not exclude summary sentences
from the section.
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Feature V1.2 V2.1 JF JC
w p w p w p w p

Idf similarity 1 12 0.5 5 0.6 16 0.5 16
Idf context similarity 0.8 3 0.5 15 0.4 10

Jaccard similarity 1 5 0.5 6 JS 7
Jaccard context similarity 0.5 8 0.7 16 0.6 16

Word vector 1 8 0.5 7 0.5 26
word-cos 1 10 0.7 7 0.5 26 0.5 10

LDA-Jaccard 1 12 0.4 7
lin 0.5 5
jcn 0.6 11

Table 4: Parameters in multi-feature fusion methods in Task1A. V1.2, V2.1, JF, JC are Voting-1.2, Voting-2.1,
Jaccard-Focused, Jaccard-Cascade respectively

method abstract community human
R2 RSU4 R2 RSU4 R2 RSU4

Jaccard-Cascade GCN 0.19648 0.10392 0.2195 0.14174 0.19117 0.13984
Jaccard-Cascade QD-DPPs 0.14483 0.09439 0.1492 0.09525 0.13961 0.11623
Jaccard-Cascade SV-DPPs 0.0981 0.06849 0.17051 0.10209 0.11548 0.09381

Jaccard-Focused GCN 0.19931 0.09956 0.24549 0.15071 0.2042 0.14162
Jaccard-Focused QD-DPPs 0.12206 0.08266 0.16443 0.09663 0.12376 0.09957
Jaccard-Focused SV-DPPs 0.12196 0.07936 0.16491 0.09954 0.15772 0.11616

Voting-1.1 GCN 0.20643 0.09324 0.24119 0.14578 0.17673 0.11583
Voting-1.1 QD-DPPs 0.1345 0.07303 0.14744 0.09072 0.10559 0.08623
Voting-1.1 SV-DPPs 0.12132 0.06753 0.18003 0.09822 0.13236 0.0937

Voting-2.0 GCN 0.18042 0.07915 0.23088 0.13093 0.17653 0.10737
Voting-2.0 QD-DPPs 0.08908 0.05948 0.17384 0.09739 0.09949 0.07156
Voting-2.0 SV-DPPs 0.14098 0.08039 0.15819 0.09075 0.11406 0.07844

Table 5: Task2 experiment results. JC means Jaccard-Cascade. JF stands for Jaccard-Focused. V1.2 and V2.1 are
Voting-1.2 and Voting-2.1 respectively.

We divide the dataset into train/dev/test for com-
paring different models in this report. ROUGE
evaluation is given on the divided test set and we
use all 30230 samples for training when inferring
on the blind test set.

4.2.2 Result
The result of the LongSumm shared task is illus-
trated in Table 6.

For model T5, we use the small version which
has about 60 million parameters. All input sections
are truncated to a maximum of 1024 words. The
model is fine-tuned for 5 epochs on the section-
wise dataset with a learning rate of 1e-4. The batch
size is 32 and we use gradient accumulation to
achieve it on a single GPU. Then, we attempt dif-
ferent ways to process the original data, expecting
to find the proper input for the model.

1. Construct summary, as mentioned above, all
data is transferred to abstractive data.

2. Original summary, as the name suggests, orig-
inal data are used as input. Because many sec-
tions do not have corresponding summaries,
there are fewer samples can be utilized, but

some corresponding summaries are relatively
longer.

3. Original+Construct summary, this method
merges the original section and the construct
section.

In order to generate the summary as long as pos-
sible within the limitation of summary length, we
design two plans to process the generated sum-
maries. Plan A simply merges the first sentence of
summaries that are generated from different sec-
tions. Plan B extracts at most three sentences from
each summary, for those with fewer words, we can
use all sentences. Also, the merged summary is
truncated to 600 words if the word count exceeds
the limit.

As for DPPs, because the LongSumm task fo-
cuses on a long summary, we change the document
compression ratio to control the summary length,
we set the ratio to 20% and 30%. For the QD
method, we select Sentence Length (SL), Sentence
Position (SP), and Sentence Coverage (SC) as fea-
tures and merge them, which can calculate sentence
quality.

As for GRU-GCN/GAT, we divide each paper
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methods submission Description R1 f R1 r R2 f R2 r RL f RL r

Pretrained
Language

Model
Based

0 Construct-A 0.424 0.373 0.120 0.104 0.172 0.149
1 Original-A 0.487 0.490 0.134 0.136 0.182 0.184
2 Construct+Original-A 0.417 0.364 0.108 0.094 0.171 0.148
3 Construct-B 0.489 0.490 0.135 0.136 0.183 0.184
4 Original-B 0.488 0.494 0.134 0.137 0.183 0.185
5 Construct+Original-B 0.487 0.487 0.135 0.136 0.183 0.183

GNN
Based

6 GRU+GAT-sim 0.479 0.491 0.143 0.146 0.182 0.186
7 GRU+GCN-sim 0.490 0.497 0.151 0.152 0.201 0.204

DPPs
Based

8 QD-DPPs-20 0.448 0.428 0.102 0.097 0.169 0.161
9 QD-DPPs-30 0.435 0.415 0.103 0.099 0.162 0.154

10 SV-DPPs-20 0.452 0.427 0.109 0.103 0.165 0.156
11 SV-DPPs-30 0.451 0.428 0.120 0.114 0.170 0.161

Table 6: LongSumm test set results. ROUGE f and ROUGE r are f1 value and recall of ROUGE results.

into sections, since sections are the natural divi-
sion of paper, and match each section to its gold
summaries. For every section, its relation graph is
constructed and system summaries are extracted
by sentence scores. After we get the section sum-
maries, paper summaries are concatenated by rank-
ing sentences from sections. In our work, GAT has
more parameters, thus are more difficult to con-
verge, and the advantage to learn graph structure
is weakened since section graphs are rather small,
which explains why attention mechanism does not
do better than GCN in some way.

The results on the test set show that extractive
summarization model using the GCN method per-
forms the best on long summary task and the per-
formance of T5 and DPPs is slightly worse than
GCN. Generally speaking, the ROUGE value of ab-
stractive summaries is lower than that of extractive
summaries. But as an abstractive summarization
model, T5 can compress more semantic informa-
tion to generate the summary closer to an artificial
summary. As for DPPs, as an unsupervised model,
it uses hand-constructed features to rank sentences.
The sentence quality obtained by this is not ac-
curate. GNN uses RNN to model sentences, and
considers sentence diversity in the learning process
of neural network. So the ability to measure sen-
tence quality is weaker than GNN. However, DPPs
is able to work well under the situation where the
training data is lacked.

5 Conclusion and Future Work

In the CL-SciSumm shared task, Jaccard-Focused
performs better than other methods in Task1A. In
future work, we will try to use the knowledge graph
and GNN for better expression of semantic and
structure information. In Task1B, POS-XGB per-
forms the best, which shows that the position fea-

tures contributes more than the content features. In
the future, more information can be extracted and
fused to obtain richer features, or combined with
some hand-craft rules to assist the classification.
In Task 2, GCN shows great potential to perform
the summarization task. We expect the neural net-
work language models to make contributions to
obtain more meaningful semantic representation
for sentences against statistical features. In the
LongSumm shared task, model T5 and extractive
summarization model based on GCN perform well
on the official data set, and DPPs still has great
potential, we expect to provide more features or
modify the sampling processes so as to improve the
performance of our models. What’s more, in this
paper we mainly focus on how to extract/generate
section-wise summaries with high quality and di-
versity, but how to pick and combine these sum-
maries is also an interesting work to be done.
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