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Abstract

In this paper, we present the results of the SemEval-2020 Task 9 on Sentiment Analysis of Code-
Mixed Tweets (SentiMix 2020).1 We also release and describe our Hinglish (Hindi-English)
and Spanglish (Spanish-English) corpora annotated with word-level language identification and
sentence-level sentiment labels. These corpora are comprised of 20K and 19K examples, re-
spectively. The sentiment labels are - Positive, Negative, and Neutral. SentiMix attracted 89
submissions in total including 61 teams that participated in the Hinglish contest and 28 submit-
ted systems to the Spanglish competition. The best performance achieved was 75.0% F1 score
for Hinglish and 80.6% F1 for Spanglish. We observe that BERT-like models and ensemble
methods are the most common and successful approaches among the participants.

1 Introduction

The evolution of social media texts such as blogs, micro-blogs (e.g., Twitter), and chats (e.g., WhatsApp
and Facebook messages) has created many new opportunities for information access and language tech-
nologies. However, it has also posed many new challenges making it one of the current prime research
areas in Natural Language Processing (NLP).

Current language technologies primarily focus on English (Young, 2020), yet social media platforms
demand methods that can also process other languages as they are inherently multilingual environments.2

Besides, multilingual communities around the world regularly express their thoughts in social media
employing and alternating different languages in the same utterance. This mixing of languages, also
known as code-mixing or code-switching,3 is a norm in multilingual societies and is one of the many
NLP challenges that social media has facilitated.

1.1 Code-Mixing Challenges

In addition to the writing aspects in social media, such as flexible grammar, permissive spelling, arbitrary
punctuation, slang, and informal abbreviations (Baldwin et al., 2015; Eisenstein, 2013), code-mixing has
introduced a diverse set of linguistic challenges. For instance, multilingual speakers tend to code-mix
using a single alphabet regardless of whether the languages involved belong to different writing systems

∗Equal contribution.
1https://ritual-uh.github.io/sentimix2020/

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/.

2Statistics show that half of the messages on Twitter are in a language other than English (Schroeder, 2010).
3We use code-mixing and code-switching interchangeably.
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(i.e., language scripts). This behavior is known as transliteration, and code-mixers rely on the phonetic
patterns of their writing (i.e., the actual sound) to convey their thoughts in the foreign language (i.e., the
language adapted to a new script) (Sitaram et al., 2019). Another common pattern in code-mixing is
the alternation of languages at the word level. This behavior often happens by inflecting words from one
language with the rules of another language (Solorio and Liu, 2008). For instance, in the second example
below, the word pushes is the result of conjugating the English verb push according to Spanish grammar
rules for the present tense in third person (in this case, the inflection -es). The Hinglish example shows
that phonetic Latin script typing is a popular practice in India, instead of using Devanagari script to write
Hindi words. We capture both transliteration and word-level code-mixing inflections in the Hinglish and
Spanglish corpora of this competition, respectively.

AyeHI aurHI enjoyEN kareHI
Eng. Trans.: come and enjoy
NoSP meSP pushesEN pleaseEN

Eng. Trans.: Don’t push me, please

Considering the previous challenges, code-mixing demands new research methods where the focus
goes beyond simply combining monolingual resources to address this linguistic phenomenon. Code-
mixing poses difficulties in a variety of language pairs and on multiple tasks along the NLP stack, such
as word-level language identification, part-of-speech tagging, dependency parsing, machine translation,
and semantic processing (Sitaram et al., 2019). Conventional NLP systems heavily rely on monolingual
resources to address code-mixed text, limiting them when properly handling issues such as phonetic
typing and word-level code-mixing.

1.2 Code-Mixing as a Global Linguistic Phenomenon
Naturally, code-mixing is more common in geographical regions with a high percentage of bi- or mul-
tilingual speakers, such as in Texas and California in the US, Hong Kong and Macao in China, many
European and African countries, and the countries in South-East Asia. Multilingualism and code-mixing
are also widespread in India, which has more than 400 languages (Eberhard et al., 2020) with about 30
languages having more than 1 million speakers. Language diversity and dialect changes trigger Indians
to frequently change and mix languages, particularly in speech and social media contexts. As of 2020,
Hindi and Spanish have over 630 million and over 530 million speakers (Eberhard et al., 2020), respec-
tively, ranking them in 3rd and 4th place based on the number of speakers worldwide, which speaks of
the relevancy of using these languages in our code-mixing competition.

1.3 SentiMix Overview
This paper provides an overview of the SemEval-2020 Task 9 competition on sentiment analysis of code-
mixed social media text (SentiMix). Specifically, we provide code-mixed text annotated with word-level
language identification and sentence-level sentiment labels (negative, neutral, and positive). We release
our Hinglish (Hindi-English) and Spanglish (Spanish-English) corpora, which are comprised of 20K and
19K tweets, respectively. We describe general statistics of the corpora as well as the baseline for the
competition.

We received 61 final submissions for Hinglish and 28 for Spanglish, adding to a total number of 89 sub-
missions. We received 33 system description papers. We provide an overview of the participants’ results
and describe their methods at a high level. Notably, the majority of these methods employed BERT-like
and ensemble models to reach competitive results, with the best performers reaching 75.0% and 80.6%
F1 scores for Hinglish and Spanglish on held-out test data, respectively. We hope that this shared task
will continue to catch the NLP community’s attention on the linguistic code-mixing phenomenon.

2 Related Work

Linguists (Verma, 1976; Bokamba, 1988; Singh, 1985) studied the phenomena of code-mixing and intra-
sentential code-switching and found that processing code-mixed language is much more complicated
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than monolingual text. Code-mixing is often found on social media which contains a lot of nonstandard
spellings of words and unnecessary capitalization (Das and Gambäck, 2014), making the task more
difficult. Naturally, the difficulty will increase as the amount of code-mixing increases. To quantify the
level of code-switching between languages in a sentence, Gambäck and Das (2016) introduced a measure
called Code Mixing Index (CMI) which considers the number of tokens of each language in a sentence
and the number of tokens where the language switches.

Finding the sentiment from code-mixed text has been attempted by some researchers. Mohammad et
al. (2013) used SVM-based classifiers to detect sentiment in tweets and text messages using semantic
information. Bojanowski et al. (2017) proposed a skip-gram based word representation model that clas-
sifies the sentiment of tweets and provides an extensive vocabulary list for language. Giatsoglou et al.
(2017) trained lexicon-based document vectors, word embedding, and hybrid systems with the polarity of
words to classify the sentiment of a tweet. Sharma et al. (2016) attempted shallow parsing of code-mixed
data obtained from online social media, and Chittaranjan et al. (2014) tried word-level identification of
code-mixed data to classify the sentiment. Some researchers also tried normalizing the text with lexicon
lookup for sentiment analysis of code-mixed data (Sharma et al., 2015).

To advance research in code-mixed language processing, few workshops have also been conducted.
Four successful series of Mixed Script Information Retrieval have been organized at the Forum for Infor-
mation Retrieval Evaluation (FIRE) (SahaRoy et al., 2013; Choudhury et al., 2014; Sequiera et al., 2015;
Banerjee et al., 2016). Three workshops on Computational Approaches to Linguistic Code-Switching
(CALCS) have been conducted which included shared tasks on language identification and Named Entity
Recognition (NER) in code-mixed data (Solorio et al., 2014a; Molina et al., 2016; Aguilar et al., 2018).
For our SentiMix Spanglish dataset, we adopt the SentiStrength (Vilares et al., 2015) annotation mecha-
nism and conduct the annotation process over the unified corpus from the three CALCS workshops.

3 Task Description

Although code-mixing has received some attention recently, properly annotated data is still scarce. We
run a shared task to perform sentiment analysis of code-mixed tweets crawled from social media. Each
tweet is classified into one of the three polarity classes - Positive, Negative, Neutral. Each tweet also has
word-level language marking. We release two datasets - Spanglish and Hinglish.

We used CodaLab4,5 to release the datasets and evaluate submissions. Initially, the participants had
access only to train and validation data. They could check their system’s performance on the validation
set on a public leaderboard. Later, a previously unseen test set was released, and the performance on
the test set was used to rank the participants. Only the first three submissions on the test set by each
participant were considered, to avoid over-fitting on the test set. The ranking was done based on the best
out of the three submissions. There was no distinction between constrained and unconstrained systems,
but the participants were asked to report what additional resources they have used for each submitted
run.

We release 20k labeled tweets for Hinglish and ≈ 19k labeled tweets for Spanglish. In both the
datasets,6 in addition to the tweet level sentiment label, each tweet also has a word-level language label.
The detailed distribution is provided in Table 1. Some annotated examples are provided in Table 2.
Although this task focuses on sentiment analysis, the data has word-level language marking and can be
used for other NLP tasks.

3.1 Evaluation Metric
To evaluate the performance and rank the participants, we use weighted F1 score on the test data, across
the positives, negatives, and neutral examples.

F1 = 2×Precision×Recall
Precision+Recall

where,
4Hinglish: https://competitions.codalab.org/competitions/20654
5Spanglish: https://competitions.codalab.org/competitions/20789
6Both the datasets are available at https://zenodo.org/record/3974927#.XyxAZCgzZPZ
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Precision = True Positives
True Positives+False Positives , Recall = True Positives

True Positives+False Negatives

The F1 scores are calculated for each class and then their average is weighted by support (number of
true instances for each class). We use a weighted F1 score since the number of instances per class is not
equal. Other than the F1 score, we also calculate precision and recall for each class to analyze and have
a better understanding of false positives and false negatives.

4 Dataset

The datasets consist of tweets labeled into one of the three classes:

• Positive (Pos): Tweets which express happiness, praise a person, group, country or a product, or
applaud something. Hinglish example: “bholy bhayaa. Ufffff dil jeet liya ap ne. Love you imran
bhai. Mind blowing ap ki acting hai.” (bholy bhayaa, you won hearts. love you imran bhai your
acting is mind blowing). Spanglish example: “We all here waiting pa ke juege mex :)” (We all
here waiting for Mexico to play :)).

• Negative (Neg): Tweets which attack a person, group, product or country, express disgust or unhap-
piness towards something, or criticize something. Hinglish example: “You efficiency of anchoring
a program is continuously deteriorating. Ab to dekhne ki himmat hi nahi” (Your efficiency of an-
choring is continuously deteriorating. Now can’t even dare to watch it) Spanglish example: “Eres
una cualkiera yes u are.” (You are a tramp, yes you are.)

• Neutral (Neu): Tweets which state facts, give news or are advertisements. In general those which
don’t fall into the above 2 categories. Hinglish example: “Nahi wo is news ko defend kerne ki
koshesh ker rhe hain h” (No, they are trying to defend this news). Spanglish example: “My phone
looks ratchet todo crack” (My phone looks ratchet all crack).

Language Split Total Positive Neutral Negative

Hinglish

Train 14,000 4,634 (33.10%) 5,264 (37.60%) 4102 (29.30%)
Validation 3,000 982 (32.73%) 1,128 (37.60%) 890 (29.67%)
Test 3,000 1,000 (33.33%) 1,100 (36.67%) 900 (30%)
Total 20,000 6,616 (33.08%) 7,492 (37.46%) 5892 (29.46%)

Spanglish

Train 12,002 6,005 (50.03%) 3,974 (33.11%) 2,023 (16.85%)
Validation 2,998 1,498 (49.96%) 994 (33.15%) 506 (16.87%)
Test 3,789 3,061 (80.78%) 206 (5.43%) 522 (13.77%)
Total 18,789 10,564 (56.22%) 5,174 (27.53%) 3,051 (16.23%)

Table 1: Class-wise statistics of the dataset for train, validation, and test set. We put special care to make
a balanced class-wise distribution for Hinglish.

Both the Hinglish and Spanglish datasets are released using the previous sentiment label scheme. How-
ever, each dataset has been annotated separately as the studies were independent before the organization
of this competition. We provide the data collection and annotation details in the following subsections.

4.1 Hinglish

Data Collection: First, we make a list of all the Hindi tokens from the dataset provided by (Patra et al.,
2018). From that list, we remove those tokens which are common to Hindi and English (example ’the’
can be used in both the languages). Then we use Twitter API 7 to crawl those tweets from twitter which
have at least one word from the list. The list has 10786 tokens. Some words from the list are: kuch, tu,
gaya, raha, aaj, apne, tum, gaye, sath etc.
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Language and Sentiment Annotation: For word-level language marking we use an automated tool
released by Bhat et al. (2014). The tokens are labeled into HIN - Hindi, ENG - English, or O - other. For
tweet level sentiment labels, we took the help of around 60 annotators who were bilingual/multilingual,
proficient in Hindi and had Hindi as their first or second language. Each tweet was shown to two annota-
tors, and it was selected if their annotations matched, else it was discarded. They used a simple website
designed for this purpose to annotate the data. Each tweet was shown on a page that had a radio button
for each label. The annotators first had to enter their unique id, then they could either select a sentiment
option for a tweet and send or choose to skip the tweet.

Statistics: Table 1 gives detailed class-wise distribution of the tweets. Although Neutral is the majority
class for Hinglish, the dataset is not too imbalanced. The class-wise distribution is similar for all three
splits. Table 2 shows some examples of tweets marked with language and sentiment tags. The average
CMI for Hinglish train, validation, and test set is 25.32, 25.53, and 25.13 respectively. The inter-annotator
agreement is 55%.

4.2 Spanglish
Data Collection: We use the Spanish-English data from the CALCS workshops (Solorio et al., 2014b;
Molina et al., 2016; Aguilar et al., 2018). In the first workshop (Solorio et al., 2014b), the data was
collected by crawling tweets from specific locations with a strong presence of Spanish and English
speakers (e.g., California and Texas). The collection process was conducted using common words from
each language through the Twitter API.7 In the second workshop (Molina et al., 2016), the organizers
provided a new test set collected with a more elaborated process. They selected big cities where bilingual
speakers are common (e.g., New York and Miami). Then, they localized Spanish radio stations that
showed code-mixed tweets. Such radio stations led to users that also practice code-mixing. Similar to
the third workshop (Aguilar et al., 2018), we take the CALCS data and extend it for sentiment analysis.
It is worth noting that a large number of tweets in the corpora only contain monolingual text (i.e., no
code-mixing). Considering that, and after merging the two corpora, we prioritize the tweets that show
code-mixed text to build the SentiMix corpus. We ended up incorporating 280 monolingual tweets per
language (English, Spanish) in the test set.

Annotation: Since we use the data from the previous CALCS workshops, we did not need to undergo
the token-level annotation process for language identification (LID). We adopted the CALCS LID label
scheme, which is comprised of the following eight classes: lang1 (English), lang2 (Spanish), mixed
(partially in both languages), ambiguous (either one or the other language), fw (a language different
than lang1 and lang2), ne (named entities), other, and unk (unrecognizable words).

Figure 1: A screenshot of the Spanglish annotation interface.

For the annotations of the sentiment labels, we follow the SentiStrength8 strategy (Thelwall et al.,
2010; Vilares et al., 2015). That is, we provide positive and negative sliders to the annotators. Each

7https://developer.twitter.com/
8http://sentistrength.wlv.ac.uk/
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slider denotes the strength for the corresponding sentiment, and the annotators can choose the level of
the sentiment they perceived from the text (see Figure 1). The range of the sliders is discrete and included
strengths from 1 to 5 with 1 being no strength (i.e., no positive or negative sentiment) and 5 the strongest
level. Using two independent sliders allowed the annotators to process the positive and negative signals
without excluding one from the other, letting them provide mixed sentiments for the given text (Berrios
et al., 2015). Once the sentiment strengths were specified, we converted them into a 3-way sentiment
scale (i.e., positive, negative, and neutral). We simply subtract the negative strength from the
positive strength, and mark the text as positive if the result was greater than zero, negative if less
than zero, or neutral otherwise.

We annotate each tweet with the help of three annotators from Amazon Mechanical Turk.9 We regulate
the annotations by using quality questions within every assignment10 of a HIT (Human Intelligence
Task). Every assignment has ten tweets, two of them were for quality control (i.e., the annotation was
already known) and the other eight tweets were the ones to annotate.11 The annotators had to have at least
one quality control tweet right so that the assignment (i.e., the ten tweets) was not automatically rejected.
Since the sentiment analysis task is arguably arbitrary, we provided multiple valid levels of strength
for the quality control tweets. If an assignment was rejected, then another annotator was automatically
required to complete the HIT until three annotations were accepted. Also, we automatically approved
HITs if their 3-way sentiment inter-annotator agreement was over 66%.12 Otherwise, we evaluated
manually the annotations and decide whether to extend the assignments or mark the sentiment labels
ourselves for the trivial cases. After merging the annotations, we gave a pass over the data and manually
corrected annotations that were unambiguously wrong.

Statistics: The Spanglish class-level distribution of the partitions appear in Table 1. Notably, the data
is highly imbalanced towards the positive class covering about 56% in the entire Spanglish corpus, while
the negative and neutral classes account for around 16% and 27%, respectively. The reason for this
imbalance distribution is that we did not collect the data following a sentiment-oriented crawling strategy
(e.g., searching by sentiment-related keywords). Instead, we just extended the original corpus, which
happens to be mostly positive. The intention to proceed in this way is to enrich the original corpus
annotations with sentiment-level labels. Moreover, the splits do not share the same distribution (i.e.,
development and test are more skewed than training) because we were annotating data on-demand rather
than having available the entire corpus at any stage of the competition. Some annotated examples are
provided in Table 2. The average CMI for the train, validation, and test sets are 21.84, 20.52, and 17.23,
respectively.

5 Baseline

We develop our baseline system using the pre-trained multilingual BERT (M-BERT; Devlin et al. (2019)).
M-BERT was trained on 104 languages’ entire Wikipedia dump and the WordPiece (Wu et al., 2016) vo-
cabulary of this model contains 110K sub-word tokens from these 104 languages. To balance the risk of
low-resource languages being under-represented or over-fitted due to small training resources during pre-
training, exponentially smoothed weighting was performed on the data during pre-training data creation
and vocabulary creation. Although M-BERT was trained on monolingual data from different languages,
it is capable of multilingual generalization in code-switching scenarios (Pires et al., 2019).

We use the Transformers (Wolf et al., 2019) library to implement our framework and we fine-tune the
pre-trained BERT-Base, Multilingual Cased model separately for each of the two languages.
Based on our observation on the training split for each dataset, we set the highest sequence length to 40
and 56 tokens for Spanglish and Hinglish, respectively. Then, we fine-tune the model for three epochs
using AdamW (Loshchilov and Hutter, 2019) optimizer (η = 2e−5).

9https://requester.mturk.com/
10An assignment is done by a single annotator.
11We use the assignment review policy ScoreMyKnownAnswers/2011-09-01.
12We use the HIT review policy SimplePlurality/2011-09-01.
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Language Tweet Class

Spanglish

@usernameother halang2 posambiguous havelang1 funlang1 itslang1
prettylang1 telang2 subeslang2 allang2 horselang1 itslang1 cutelang1
lollang1
(@username ah, then have fun, it’s pretty, you ride the horse, it’s cute lol)

Positive

Spanglish

Cuandolang2 Mislang2 parentslang1 melang2 dejanlang2 irlang2 ellang2
datelang1 meambiguous Kedalang2 Mallang2 /other .other -other
Nolang2 MAMENlang2

(When my parents let me go, my date is cancelled / . - You’re kidding me!)

Negative

Spanglish
Tengolang2 hungrylang1 mhmunk

(I’m hungry mhm)
Neutral

Hinglish

CongratulationsENG SirENG weENG proudENG ofENG youENG ..O AapHIN
prHIN puraHIN jakeenHIN haiHIN ..O aapHIN bohatHIN achaaHINn homeHIN
ministerENG HongaHIN ..O )O
(Congratulations sir we are proud of you.. We believe in you..
You will be a very good home minister.. )

Positive

Hinglsih
HosteliteENG kENG naamHIN peHIN dhabbaHIN hoHIN tumHIN

(you are a blot on the name of a hostelite)
Negative

Hinglish
WarmENG upENG matchENG toENG theekHIN thaakHIN chalHIN raHIN haiHIN
(Warm up match is going fine)

Neutral

Table 2: Examples of labeled tweets. Code-mixing often refers to the juxtaposition of linguistic units
from two or more languages in a single conversation or sometimes even a single utterance. These ex-
amples emphasize on the fact that people don’t do only phrase, or tag-mixing as it was a belief in the
linguistic forum until now.

6 Participation and Top Performing Systems

We received an overwhelming response for both Hinglish and Spanglish. 61 teams submitted their sys-
tems for Hinglish and 28 teams submitted their systems for Spanglish. 16 teams submitted to both
Hinglish and Spanglish. We received 33 system description papers in total. The embeddings and tech-
niques used by the participants are tabulated in Table 5. The team names, Codalab names, and their
corresponding description papers are provided in Appendix (Table 6). We provide a summary of the top
teams below (Codalab usernames are mentioned in parentheses) :

Top Hinglish Systems @ SentiMix

• KK2018 (kk2018) used pre-trained XLM-R(Conneau et al., 2019) which was trained with 100
languages. They trained it with adversarial (intentionally designed to make model cause a mistake)
examples. To create adversarial examples, they used the formula proposed by (Miyato et al., 2016)
where the perturbation is created using the gradient of the loss function.

• MSR India (genius1237) used embeddings from XLM-R as inputs to a classification layer. They
also do so with multiligual BERT.

• Reed (gopalvinay) Finetuned BERT and claimed that pre-training of BERT is not of much use.
They also tried bag-of-words based feedforward networks.

• BAKSA (ayushk) used XLM-R(Conneau et al., 2019) multilingual embeddings ( a transformer-
based masked language model trained on 100 languages) followed by ensemble model of CNN and
self attention architecture.

Top Spanglish Systems @ SentiMix

• XLP (LiangZhao) augmented the data using machine translation. Then they used pre-trained em-
beddings made by Facebook Research (XLMs)(Lample and Conneau, 2019) followed by CNN
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classifier of linear classifier (fully connected layer). They optimized a weighted loss function based
on the complexity of code-mixing.

• Voice@SRIB (asking28) applied multiple pre-processing steps and used Ensemble model by com-
bining CNN, self-attention and LSTM based model.

• Palomino-Ochoa (dpalominop) combined a transfer learning scheme based on ULMFit (Howard
and Ruder, 2018) with the-state-of-the-art language model BERT.

• HPCC-YNU (kongjun) used word and character embeddings as input to BiLSTM with attention.

7 Results and Analysis

Table 3 and Table 4 show top 15 participants 13 for Hinglish and Spanglish respectively. For Hinglish
the top 15 participants lie between 75% and 68.6% F1 score. The participants in the middle of the table
are quite close to each other. 44 participants beat the baseline whereas 17 could not. For Spanglish, the
top 15 F1 scores lie between 80.6% and 71.0% and most are in mid 70s. 22 teams were able to beat the
baseline whereas 6 could not. The results are much better for positive than for other two classes due to
the data imbalance.

Rank System Positive Neutral Negative Avg.

P R F1 P R F1 P R F1 F1

1 KK2018 84.3 76.0 79.9 65.2 73.1 68.9 78.5 75.4 76.9 75.0
2 Genius1237 81.0 77.8 79.3 65.7 64.3 65.0 72.0 77.0 74.4 72.6
3 olenet 78.2 74.4 76.2 62.8 65.3 64.0 75.2 75.7 75.5 71.5
4 gopalanvinay 80.7 74.6 77.5 61.4 67.5 64.3 74.5 71.6 73.0 71.3
5 ayushk 78.8 73.8 76.2 60.9 67.5 64.0 75.3 70.6 72.9 70.7

6 Taha 78.6 72.8 75.6 60.6 70.1 65.0 76.2 67.9 71.8 70.6
7 Miriam 78.0 77.3 77.6 62.6 60.1 61.3 70.7 74.9 72.7 70.2
8 HugoLerogeron 79.2 74.7 76.9 60.3 63.9 62.1 70.6 70.0 70.3 69.5
9 somban 78.6 72.9 75.6 59.4 65.0 62.1 71.8 69.3 70.5 69.1

10 aditya malte 80.3 69.0 74.2 57.0 73.5 64.2 77.3 62.2 69.0 69.0

11 MeisterMorxrc 79.9 70.1 74.7 59.5 65.0 62.1 70.2 71.9 71.0 69.0
12 nirantk 78.9 70.8 74.6 58.3 67.4 62.5 73.2 67.6 70.2 68.9
13 apurva19 78.8 75.8 77.3 61.2 60.8 61.0 67.4 70.8 69.1 68.8
14 c1pher 79.7 69.7 74.4 56.5 73.5 63.9 78.3 60.7 68.4 68.7
15 will go 77.2 70.5 73.7 57.8 70.2 63.4 75.9 63.4 69.1 68.6

45 Baseline 72.8 68.8 70.7 56.2 60.2 58.1 69.1 67.4 68.3 65.4

Table 3: Top 15 Results for the Hinglish dataset. The systems are ordered by the Weighted Average F1
(Avg.) scores of the Postive, Neutral, and Negative classes. We report Precision (P), Recall (R), and F1
score for each class separately. In each column, the boldfaced scores are the highest score in that column.

In the previous section, we briefly described the top systems. Here, we group and summarize various
techniques used by the systems (Codalab usernames are mentioned in parentheses) :

• Word Embedding: Three popular word embedding ways explored by participants. Word2Vec,
Glove, FastText. Some participants used character-embedding. Additional resources were also used
by participants to train their own embeddings.

• Classical ML methods: Classical ML techniques like - logistic regression, Naive Bayes, Percep-
tron, and SVM have been tested by several researchers. Naive Bayes and its multinomial kernel

13Results for all the participants are available at https://ritual-uh.github.io/sentimix2020/
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Rank System Positive Neutral Negative Avg.

P R F1 P R F1 P R F1 F1

1 LiangZhao 88.3 92.6 90.4 18.1 20.9 19.4 59.9 39.5 47.6 80.6
2 rachel 89.0 87.7 88.3 16.0 45.1 23.7 65.3 24.5 35.7 77.6
3 asking28 84.5 90.1 87.2 6.1 4.9 5.4 43.5 29.9 35.4 75.6
4 dpalominop 91.6 77.2 83.8 12.7 30.6 17.9 42.9 58.6 49.5 75.5
5 kongjun 87.1 84.6 85.9 11.1 30.1 16.2 56.1 27.2 36.6 75.3

6 HaoYu 92.9 74.0 82.4 11.9 48.1 19.1 55.2 55.0 55.1 75.2
7 Taha 84.7 89.5 87.0 51.9 20.5 29.4 10.4 17.5 13.0 75.1
8 meiyim 93.0 73.3 82.0 12.1 55.8 19.9 57.7 47.1 51.9 74.5
9 Lavinia Ap 82.0 97.9 89.2 13.8 3.9 6.1 56.0 8.0 14.1 74.4
10 jupitter 93.6 71.8 81.3 11.0 53.9 18.2 58.1 47.9 52.5 73.9

11 tangmen 91.8 72.5 81.0 11.3 55.3 18.8 59.8 41.6 49.0 73.0
12 hermosillo748 85.4 81.3 83.3 7.3 21.8 10.9 54.1 26.6 35.7 72.8
13 harsh 6 87.7 77.9 82.5 9.5 23.3 13.5 36.1 39.1 37.5 72.5
14 francesita 80.9 99.5 89.2 8.7 1.0 1.7 0.0 0.0 0.0 72.2
15 ajason08 90.1 71.0 79.4 8.2 40.3 13.6 54.7 37.5 44.5 71.0

23 Baseline 89.5 63.0 74.0 7.9 49.5 13.6 47.0 31.0 37.4 65.6

Table 4: Top 15 results for the Spanglish dataset. The systems are ordered by the Weighted Average F1
(Avg.) scores of the Postive, Neutral, and Negative classes. We report Precision (P), Recall (R), and F1
score for each class separately. In each column, the boldfaced score is the highest score in that column.

was tried by Zyy1510 (zyy1510). Teams like TueMix (guzimanis), WESSA (ahmed0sultan), C1
(lakshadvani) reported their experiments with Logistic Regression, whereas yet another popular
choice Random Forest has been used by IRLab DAIICT (apurva19), C1 (lakshadvani). SVM was
tried by quite a few teams - IUST (Taha), JUNLP (sainik.mahata), WESSA (ahmed0sultan), C1
(lakshadvani), IIITG-ADBU (abaruah).

• RNN: RNN, GRU, LSTM, along with their bi-directional varients were explored by several teams.
Some of them are gundapusunil (gundapusinil), Team Swift (aditya malte), CS-Embed (francesita),
GULD@NUIG (koustava), IIT Gandhinagar (vivek IITGN) etc.

• CNN for text: Although RNN is the more popular choices for NLP tasks, quite a few teams also
used CNN for text. Some of them are IUST (Taha), FII-UAIC (Lavinia AP), NLP-CIC (ajason08),
NITS-Hinglish-SentiMix (rns2020), Zyy1510 (zyy1510), HCMS (the0ne, talent404).

• Transformer, BERT and related language models: The recent trend in NLP is to use highly capa-
ble language models like BERT and XLNet. The popular choice, BERT, was tried by MeisterMorxrc
(MeisterMorxrc), HinglishNLP (nirantk), IRLab DAIICT (apurva19), WESSA (ahmed0sultan), C1
(lakshadvani), IIITG-ADBU (abaruah). Some researchers like Deep Learning Brasil - NLP (veris-
simo.manoel) experimented with XLNet. XLmR was used by Will go (will go) , kk2018 (kk2018),
FiSSA (jupitter) etc. These type of models gave the best results.

• Ensembles: Some teams like Voice@SRIB (asking28), UPB (eduardgzaharia, clementincercel) etc.
used ensemble methods. in all cases, ensembles performed better than the their individual models.

• Special Mentions: Apart from common practices and architectures quite a few participants ex-
plored interesting dimensions and added significant value to this endeavor. We strongly believe
these dimensions need to be explored and discussed further.:

XLP (LiangZhao) used Cross-lingual embeddings which could an interesting way for code-mixed
language processing where we have scarcity of annotated data.
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Table 5: Overview of the techniques used by the participants. This is not an exhaustive list. Teams are
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UPB (eduardgzaharia, clementincercel) used capsule network with biGRU and showed promising
results. The use of capsule networks in NLP tasks need further exploration.

ULD@NUIG (koustava) explored an interesting way to phoneme based Generative Morphemes
learning approach. Sub-word based embedding is an interesting new way in the NLP community,
but what is the best sub-word unit to choose is still unresolved. Morpheme based approach could
be a good alternative, especially for highly spelling variant code-mixed data.

IIT Gandhinagar (vivek IITGN) tried a new direction by generating sentences using language
modeling. Language modeling for code-mixed data is still an under-researched problem.

HPCC-YNU (kongjun) used a Bilingual Vector Gating Mechanism. Vector gating technique got
certain success in document classification kinds of applications, but its applications in other NLP
dimension demands further exploration.

Will go (will go) used Bert and Pseudo labeling. Pseudo Labeling can be a useful strategy for
code-mixed languages especially when annotated data is scarce. .

kk2018 (kk2018) reported unique ways to apply adversarial network and its usage in code-mixing.
They got very good results.

LIMSI UPV (somban) gave a way to merge RNN and CNN architecture together for the betterment
of sentiment analysis. This could be an interesting way to explore in the future.

8 Conclusion and Future Work

SentiMix, sentiment analysis of code-mixed tweets at SemEval 2020 received an overwhelming response
for both Hinglish and Spanglish. 61 teams submitted their systems for Hinglish and 28 teams submitted
their systems for Spanglish. The best performance achieved was 75.0 % F1 score for Hinglish and
80.6% for Spanglish. We received a total of 33 system description papers. BERT-like models were the
most successful among participants. Although the SentiMix task mainly focused on sentiment analysis,
the data will serve the NLP community or whoever is interested in the code-mixing problem for these
particular languages and in general.

Properly annotated code-mixed data is still scarce. The success of SentiMix motivates us to go further
and organize similar events in the future. We plan to add more languages, especially from regions
that have a high percentage of bi- or multilingual speakers. We also plan to enrich our datasets with
annotations for other tasks (NER, emotion recognition, translation etc). We strongly believe that code-
mixing is a new horizon of interest in the NLP community and needs to be further explored in the future.
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A Participants

Team Codalab Usernames System Description Paper

BAKSA ayushk, harsh 6 Kumar et al. (2020)
C1 lakshadvani Advani et al. (2020)
CS-Embed francesita Leon et al. (2020)
Deep Learning Brasil - NLP verissimo.manoel dos Santos Neto et al. (2020)
FII-UAIC Lavinia Ap Aparaschivei et al. (2020)
FiSSA jupitter Braaksma et al. (2020)
gundapusunil gundapusunil Gundapu and Mamidi (2020)
HCMS the0ne, talent404 Srivastava and Vardhan (2020)
HPCC-YNU kongjun Kong et al. (2020)
HinglishNLP Nirantk Bhange and Kasliwal (2020)
IIITG-ADBU abaruah Baruah et al. (2020)
IIT Gandhinagar vivek IITGN Srivastava and Singh (2020)
IRLab DAIICT apurva19 Parikh et al. (2020)
IUST Taha Javdan et al. (2020)
JUNLP sainik.mahata Garain et al. (2020)
KK2018 kk2018 Liu et al. (2020)
LIMSI UPV somban Banerjee et al. (2020)
LT3 c1pher Singh and Lefever (2020)
MSR India genius1237 Srinivasan (2020)
MeisterMorxrc MeisterMorxrc Wu et al. (2020)
NITS-Hinglish-SentiMix rns2020 Baroi et al. (2020)
NLP-CIC ajason08 Angel et al. (2020)
Palomino-Ochoa dpalominop Palomino and Ochoa-Luna (2020)
Reed gopalvinay Gopalan and Hopkins (2020)
Team Swift aditya malte Malte et al. (2020)
TueMix guzimanis Bear et al. (2020)
ULD@NUIG koustava Goswami et al. (2020)
UPB eduardgzaharia, clementincercel Zaharia et al. (2020)
Voice@SRIB asking28 Singh and Parmar (2020)
WESSA ahmed0sultan Sultan et al. (2020)
Will go will go Bao et al. (2020)
XLP LiangZhao Ma et al. (2020)
Zyy1510 zyy1510 Zhu et al. (2020)

Table 6: The teams that participated in Sentimix-2020 and submitted system description papers with the
corresponding reference thereof. Teams are sorted alphabetically.


