@inproceedings{bhange-kasliwal-2020-hinglishnlp,
title = "{H}inglish{NLP} at {S}em{E}val-2020 Task 9: Fine-tuned Language Models for {H}inglish Sentiment Detection",
author = "Bhange, Meghana and
Kasliwal, Nirant",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.119/",
doi = "10.18653/v1/2020.semeval-1.119",
pages = "934--939",
abstract = "Sentiment analysis for code-mixed social media text continues to be an under-explored area. This work adds two common approaches: fine-tuning large transformer models and sample efficient methods like ULMFiT. Prior work demonstrates the efficacy of classical ML methods for polarity detection. Fine-tuned general-purpose language representation models, such as those of the BERT family are benchmarked along with classical machine learning and ensemble methods. We show that NB-SVM beats RoBERTa by 6.2{\%} (relative) F1. The best performing model is a majority-vote ensemble which achieves an F1 of 0.707. The leaderboard submission was made under the codalab username nirantk, with F1 of 0.689."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bhange-kasliwal-2020-hinglishnlp">
<titleInfo>
<title>HinglishNLP at SemEval-2020 Task 9: Fine-tuned Language Models for Hinglish Sentiment Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Meghana</namePart>
<namePart type="family">Bhange</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nirant</namePart>
<namePart type="family">Kasliwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentiment analysis for code-mixed social media text continues to be an under-explored area. This work adds two common approaches: fine-tuning large transformer models and sample efficient methods like ULMFiT. Prior work demonstrates the efficacy of classical ML methods for polarity detection. Fine-tuned general-purpose language representation models, such as those of the BERT family are benchmarked along with classical machine learning and ensemble methods. We show that NB-SVM beats RoBERTa by 6.2% (relative) F1. The best performing model is a majority-vote ensemble which achieves an F1 of 0.707. The leaderboard submission was made under the codalab username nirantk, with F1 of 0.689.</abstract>
<identifier type="citekey">bhange-kasliwal-2020-hinglishnlp</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.119</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.119/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>934</start>
<end>939</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HinglishNLP at SemEval-2020 Task 9: Fine-tuned Language Models for Hinglish Sentiment Detection
%A Bhange, Meghana
%A Kasliwal, Nirant
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F bhange-kasliwal-2020-hinglishnlp
%X Sentiment analysis for code-mixed social media text continues to be an under-explored area. This work adds two common approaches: fine-tuning large transformer models and sample efficient methods like ULMFiT. Prior work demonstrates the efficacy of classical ML methods for polarity detection. Fine-tuned general-purpose language representation models, such as those of the BERT family are benchmarked along with classical machine learning and ensemble methods. We show that NB-SVM beats RoBERTa by 6.2% (relative) F1. The best performing model is a majority-vote ensemble which achieves an F1 of 0.707. The leaderboard submission was made under the codalab username nirantk, with F1 of 0.689.
%R 10.18653/v1/2020.semeval-1.119
%U https://aclanthology.org/2020.semeval-1.119/
%U https://doi.org/10.18653/v1/2020.semeval-1.119
%P 934-939
Markdown (Informal)
[HinglishNLP at SemEval-2020 Task 9: Fine-tuned Language Models for Hinglish Sentiment Detection](https://aclanthology.org/2020.semeval-1.119/) (Bhange & Kasliwal, SemEval 2020)
ACL