@inproceedings{palomino-ochoa-luna-2020-palomino,
title = "Palomino-Ochoa at {S}em{E}val-2020 Task 9: Robust System Based on Transformer for Code-Mixed Sentiment Classification",
author = "Palomino, Daniel and
Ochoa-Luna, Jos{\'e}",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.124",
doi = "10.18653/v1/2020.semeval-1.124",
pages = "963--967",
abstract = "We present a transfer learning system to perform a mixed Spanish-English sentiment classification task. Our proposal uses the state-of-the-art language model BERT and embed it within a ULMFiT transfer learning pipeline. This combination allows us to predict the polarity detection of code-mixed (English-Spanish) tweets. Thus, among 29 submitted systems, our approach (referred to as dplominop) is ranked 4th on the Sentimix Spanglish test set of SemEval 2020 Task 9. In fact, our system yields the weighted-F1 score value of 0.755 which can be easily reproduced {---} the source code and implementation details are made available.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="palomino-ochoa-luna-2020-palomino">
<titleInfo>
<title>Palomino-Ochoa at SemEval-2020 Task 9: Robust System Based on Transformer for Code-Mixed Sentiment Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Palomino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">José</namePart>
<namePart type="family">Ochoa-Luna</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a transfer learning system to perform a mixed Spanish-English sentiment classification task. Our proposal uses the state-of-the-art language model BERT and embed it within a ULMFiT transfer learning pipeline. This combination allows us to predict the polarity detection of code-mixed (English-Spanish) tweets. Thus, among 29 submitted systems, our approach (referred to as dplominop) is ranked 4th on the Sentimix Spanglish test set of SemEval 2020 Task 9. In fact, our system yields the weighted-F1 score value of 0.755 which can be easily reproduced — the source code and implementation details are made available.</abstract>
<identifier type="citekey">palomino-ochoa-luna-2020-palomino</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.124</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.124</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>963</start>
<end>967</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Palomino-Ochoa at SemEval-2020 Task 9: Robust System Based on Transformer for Code-Mixed Sentiment Classification
%A Palomino, Daniel
%A Ochoa-Luna, José
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F palomino-ochoa-luna-2020-palomino
%X We present a transfer learning system to perform a mixed Spanish-English sentiment classification task. Our proposal uses the state-of-the-art language model BERT and embed it within a ULMFiT transfer learning pipeline. This combination allows us to predict the polarity detection of code-mixed (English-Spanish) tweets. Thus, among 29 submitted systems, our approach (referred to as dplominop) is ranked 4th on the Sentimix Spanglish test set of SemEval 2020 Task 9. In fact, our system yields the weighted-F1 score value of 0.755 which can be easily reproduced — the source code and implementation details are made available.
%R 10.18653/v1/2020.semeval-1.124
%U https://aclanthology.org/2020.semeval-1.124
%U https://doi.org/10.18653/v1/2020.semeval-1.124
%P 963-967
Markdown (Informal)
[Palomino-Ochoa at SemEval-2020 Task 9: Robust System Based on Transformer for Code-Mixed Sentiment Classification](https://aclanthology.org/2020.semeval-1.124) (Palomino & Ochoa-Luna, SemEval 2020)
ACL