@inproceedings{shatnawi-etal-2020-mlengineer,
title = "{MLE}ngineer at {S}em{E}val-2020 Task 7: {BERT}-Flair Based Humor Detection Model ({BFH}umor)",
author = "Shatnawi, Fara and
Abdullah, Malak and
Hammad, Mahmoud",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.136",
doi = "10.18653/v1/2020.semeval-1.136",
pages = "1041--1048",
abstract = "Task 7, Assessing the Funniness of Edited News Headlines, in the International Workshop SemEval2020 introduces two sub-tasks to predict the funniness values of edited news headlines from the Reddit website. This paper proposes the BFHumor model of the MLEngineer team that participates in both sub-tasks in this competition. The BFHumor{'}s model is defined as a BERT-Flair based humor detection model that is a combination of different pre-trained models with various Natural Language Processing (NLP) techniques. The Bidirectional Encoder Representations from Transformers (BERT) regressor is considered the primary pre-trained model in our approach, whereas Flair is the main NLP library. It is worth mentioning that the BFHumor model has been ranked 4th in sub-task1 with a root mean square error (RMSE) value of 0.51966, and it is 0.02 away from the first ranked model. Also, the team is ranked 12th in the sub-task2 with an accuracy of 0.62291, which is 0.05 away from the top-ranked model. Our results indicate that the BFHumor model is one of the top models for detecting humor in the text.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shatnawi-etal-2020-mlengineer">
<titleInfo>
<title>MLEngineer at SemEval-2020 Task 7: BERT-Flair Based Humor Detection Model (BFHumor)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fara</namePart>
<namePart type="family">Shatnawi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malak</namePart>
<namePart type="family">Abdullah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mahmoud</namePart>
<namePart type="family">Hammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Task 7, Assessing the Funniness of Edited News Headlines, in the International Workshop SemEval2020 introduces two sub-tasks to predict the funniness values of edited news headlines from the Reddit website. This paper proposes the BFHumor model of the MLEngineer team that participates in both sub-tasks in this competition. The BFHumor’s model is defined as a BERT-Flair based humor detection model that is a combination of different pre-trained models with various Natural Language Processing (NLP) techniques. The Bidirectional Encoder Representations from Transformers (BERT) regressor is considered the primary pre-trained model in our approach, whereas Flair is the main NLP library. It is worth mentioning that the BFHumor model has been ranked 4th in sub-task1 with a root mean square error (RMSE) value of 0.51966, and it is 0.02 away from the first ranked model. Also, the team is ranked 12th in the sub-task2 with an accuracy of 0.62291, which is 0.05 away from the top-ranked model. Our results indicate that the BFHumor model is one of the top models for detecting humor in the text.</abstract>
<identifier type="citekey">shatnawi-etal-2020-mlengineer</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.136</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.136</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1041</start>
<end>1048</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MLEngineer at SemEval-2020 Task 7: BERT-Flair Based Humor Detection Model (BFHumor)
%A Shatnawi, Fara
%A Abdullah, Malak
%A Hammad, Mahmoud
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F shatnawi-etal-2020-mlengineer
%X Task 7, Assessing the Funniness of Edited News Headlines, in the International Workshop SemEval2020 introduces two sub-tasks to predict the funniness values of edited news headlines from the Reddit website. This paper proposes the BFHumor model of the MLEngineer team that participates in both sub-tasks in this competition. The BFHumor’s model is defined as a BERT-Flair based humor detection model that is a combination of different pre-trained models with various Natural Language Processing (NLP) techniques. The Bidirectional Encoder Representations from Transformers (BERT) regressor is considered the primary pre-trained model in our approach, whereas Flair is the main NLP library. It is worth mentioning that the BFHumor model has been ranked 4th in sub-task1 with a root mean square error (RMSE) value of 0.51966, and it is 0.02 away from the first ranked model. Also, the team is ranked 12th in the sub-task2 with an accuracy of 0.62291, which is 0.05 away from the top-ranked model. Our results indicate that the BFHumor model is one of the top models for detecting humor in the text.
%R 10.18653/v1/2020.semeval-1.136
%U https://aclanthology.org/2020.semeval-1.136
%U https://doi.org/10.18653/v1/2020.semeval-1.136
%P 1041-1048
Markdown (Informal)
[MLEngineer at SemEval-2020 Task 7: BERT-Flair Based Humor Detection Model (BFHumor)](https://aclanthology.org/2020.semeval-1.136) (Shatnawi et al., SemEval 2020)
ACL