@inproceedings{bejan-2020-memosys,
title = "{M}emo{SYS} at {S}em{E}val-2020 Task 8: Multimodal Emotion Analysis in Memes",
author = "Bejan, Irina",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.155",
doi = "10.18653/v1/2020.semeval-1.155",
pages = "1172--1178",
abstract = "Internet memes are one of the most viral types of content in social media and are equally used in promoting hate speech. Towards a more broad understanding of memes, this paper describes the MemoSys system submitted in Task 8 of SemEval 2020, which aims to classify the sentiment of Internet memes and provide a minimum description of the type of humor it depicts (sarcastic, humorous, offensive, motivational) and its semantic scale. The solution presented covers four deep model architectures which are based on a joint fusion between the VGG16 pre-trained model for extracting visual information and the canonical BERT model or TF-IDF for text understanding. The system placed 5th of 36 participating systems in the task A, offering promising prospects to the use of transfer learning to approach Internet memes understanding.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bejan-2020-memosys">
<titleInfo>
<title>MemoSYS at SemEval-2020 Task 8: Multimodal Emotion Analysis in Memes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Irina</namePart>
<namePart type="family">Bejan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Internet memes are one of the most viral types of content in social media and are equally used in promoting hate speech. Towards a more broad understanding of memes, this paper describes the MemoSys system submitted in Task 8 of SemEval 2020, which aims to classify the sentiment of Internet memes and provide a minimum description of the type of humor it depicts (sarcastic, humorous, offensive, motivational) and its semantic scale. The solution presented covers four deep model architectures which are based on a joint fusion between the VGG16 pre-trained model for extracting visual information and the canonical BERT model or TF-IDF for text understanding. The system placed 5th of 36 participating systems in the task A, offering promising prospects to the use of transfer learning to approach Internet memes understanding.</abstract>
<identifier type="citekey">bejan-2020-memosys</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.155</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.155</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1172</start>
<end>1178</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MemoSYS at SemEval-2020 Task 8: Multimodal Emotion Analysis in Memes
%A Bejan, Irina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F bejan-2020-memosys
%X Internet memes are one of the most viral types of content in social media and are equally used in promoting hate speech. Towards a more broad understanding of memes, this paper describes the MemoSys system submitted in Task 8 of SemEval 2020, which aims to classify the sentiment of Internet memes and provide a minimum description of the type of humor it depicts (sarcastic, humorous, offensive, motivational) and its semantic scale. The solution presented covers four deep model architectures which are based on a joint fusion between the VGG16 pre-trained model for extracting visual information and the canonical BERT model or TF-IDF for text understanding. The system placed 5th of 36 participating systems in the task A, offering promising prospects to the use of transfer learning to approach Internet memes understanding.
%R 10.18653/v1/2020.semeval-1.155
%U https://aclanthology.org/2020.semeval-1.155
%U https://doi.org/10.18653/v1/2020.semeval-1.155
%P 1172-1178
Markdown (Informal)
[MemoSYS at SemEval-2020 Task 8: Multimodal Emotion Analysis in Memes](https://aclanthology.org/2020.semeval-1.155) (Bejan, SemEval 2020)
ACL