@inproceedings{javdan-etal-2020-iust,
title = "{IUST} at {S}em{E}val-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media Text Using Deep Neural Networks and Linear Baselines",
author = "Javdan, Soroush and
Shangipour ataei, Taha and
Minaei-Bidgoli, Behrouz",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.170",
doi = "10.18653/v1/2020.semeval-1.170",
pages = "1270--1275",
abstract = "Sentiment Analysis is a well-studied field of Natural Language Processing. However, the rapid growth of social media and noisy content within them poses significant challenges in addressing this problem with well-established methods and tools. One of these challenges is code-mixing, which means using different languages to convey thoughts in social media texts. Our group, with the name of IUST(username: TAHA), participated at the SemEval-2020 shared task 9 on Sentiment Analysis for Code-Mixed Social Media Text, and we have attempted to develop a system to predict the sentiment of a given code-mixed tweet. We used different preprocessing techniques and proposed to use different methods that vary from NBSVM to more complicated deep neural network models. Our best performing method obtains an F1 score of 0.751 for the Spanish-English sub-task and 0.706 over the Hindi-English sub-task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="javdan-etal-2020-iust">
<titleInfo>
<title>IUST at SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media Text Using Deep Neural Networks and Linear Baselines</title>
</titleInfo>
<name type="personal">
<namePart type="given">Soroush</namePart>
<namePart type="family">Javdan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taha</namePart>
<namePart type="family">Shangipour ataei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Behrouz</namePart>
<namePart type="family">Minaei-Bidgoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentiment Analysis is a well-studied field of Natural Language Processing. However, the rapid growth of social media and noisy content within them poses significant challenges in addressing this problem with well-established methods and tools. One of these challenges is code-mixing, which means using different languages to convey thoughts in social media texts. Our group, with the name of IUST(username: TAHA), participated at the SemEval-2020 shared task 9 on Sentiment Analysis for Code-Mixed Social Media Text, and we have attempted to develop a system to predict the sentiment of a given code-mixed tweet. We used different preprocessing techniques and proposed to use different methods that vary from NBSVM to more complicated deep neural network models. Our best performing method obtains an F1 score of 0.751 for the Spanish-English sub-task and 0.706 over the Hindi-English sub-task.</abstract>
<identifier type="citekey">javdan-etal-2020-iust</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.170</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.170</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1270</start>
<end>1275</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IUST at SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media Text Using Deep Neural Networks and Linear Baselines
%A Javdan, Soroush
%A Shangipour ataei, Taha
%A Minaei-Bidgoli, Behrouz
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F javdan-etal-2020-iust
%X Sentiment Analysis is a well-studied field of Natural Language Processing. However, the rapid growth of social media and noisy content within them poses significant challenges in addressing this problem with well-established methods and tools. One of these challenges is code-mixing, which means using different languages to convey thoughts in social media texts. Our group, with the name of IUST(username: TAHA), participated at the SemEval-2020 shared task 9 on Sentiment Analysis for Code-Mixed Social Media Text, and we have attempted to develop a system to predict the sentiment of a given code-mixed tweet. We used different preprocessing techniques and proposed to use different methods that vary from NBSVM to more complicated deep neural network models. Our best performing method obtains an F1 score of 0.751 for the Spanish-English sub-task and 0.706 over the Hindi-English sub-task.
%R 10.18653/v1/2020.semeval-1.170
%U https://aclanthology.org/2020.semeval-1.170
%U https://doi.org/10.18653/v1/2020.semeval-1.170
%P 1270-1275
Markdown (Informal)
[IUST at SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media Text Using Deep Neural Networks and Linear Baselines](https://aclanthology.org/2020.semeval-1.170) (Javdan et al., SemEval 2020)
ACL