@inproceedings{bear-etal-2020-tuemix,
title = "{T}ue{M}ix at {S}em{E}val-2020 Task 9: Logistic Regression with Linguistic Feature Set",
author = "Bear, Elizabeth and
Hoefels, Diana Constantina and
Manolescu, Mihai",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.178",
doi = "10.18653/v1/2020.semeval-1.178",
pages = "1316--1321",
abstract = "Commonly occurring in settings such as social media platforms, code-mixed content makes the task of identifying sentiment notably more challenging and complex due to the lack of structure and noise present in the data. SemEval-2020 Task 9, SentiMix, was organized with the purpose of detecting the sentiment of a given code-mixed tweet comprising Hindi and English. We tackled this task by comparing the performance of a system, TueMix - a logistic regression algorithm trained with three feature components: TF-IDF n-grams, monolingual sentiment lexicons, and surface features - with a neural network approach. Our results showed that TueMix outperformed the neural network approach and yielded a weighted F1-score of 0.685.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bear-etal-2020-tuemix">
<titleInfo>
<title>TueMix at SemEval-2020 Task 9: Logistic Regression with Linguistic Feature Set</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Bear</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diana</namePart>
<namePart type="given">Constantina</namePart>
<namePart type="family">Hoefels</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mihai</namePart>
<namePart type="family">Manolescu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Commonly occurring in settings such as social media platforms, code-mixed content makes the task of identifying sentiment notably more challenging and complex due to the lack of structure and noise present in the data. SemEval-2020 Task 9, SentiMix, was organized with the purpose of detecting the sentiment of a given code-mixed tweet comprising Hindi and English. We tackled this task by comparing the performance of a system, TueMix - a logistic regression algorithm trained with three feature components: TF-IDF n-grams, monolingual sentiment lexicons, and surface features - with a neural network approach. Our results showed that TueMix outperformed the neural network approach and yielded a weighted F1-score of 0.685.</abstract>
<identifier type="citekey">bear-etal-2020-tuemix</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.178</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.178</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1316</start>
<end>1321</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TueMix at SemEval-2020 Task 9: Logistic Regression with Linguistic Feature Set
%A Bear, Elizabeth
%A Hoefels, Diana Constantina
%A Manolescu, Mihai
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F bear-etal-2020-tuemix
%X Commonly occurring in settings such as social media platforms, code-mixed content makes the task of identifying sentiment notably more challenging and complex due to the lack of structure and noise present in the data. SemEval-2020 Task 9, SentiMix, was organized with the purpose of detecting the sentiment of a given code-mixed tweet comprising Hindi and English. We tackled this task by comparing the performance of a system, TueMix - a logistic regression algorithm trained with three feature components: TF-IDF n-grams, monolingual sentiment lexicons, and surface features - with a neural network approach. Our results showed that TueMix outperformed the neural network approach and yielded a weighted F1-score of 0.685.
%R 10.18653/v1/2020.semeval-1.178
%U https://aclanthology.org/2020.semeval-1.178
%U https://doi.org/10.18653/v1/2020.semeval-1.178
%P 1316-1321
Markdown (Informal)
[TueMix at SemEval-2020 Task 9: Logistic Regression with Linguistic Feature Set](https://aclanthology.org/2020.semeval-1.178) (Bear et al., SemEval 2020)
ACL