@inproceedings{sultan-etal-2020-wessa,
title = "{WESSA} at {S}em{E}val-2020 Task 9: Code-Mixed Sentiment Analysis Using Transformers",
author = "Sultan, Ahmed and
Salim, Mahmoud and
Gaber, Amina and
El Hosary, Islam",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.181",
doi = "10.18653/v1/2020.semeval-1.181",
pages = "1342--1347",
abstract = "In this paper, we describe our system submitted for SemEval 2020 Task 9, Sentiment Analysis for Code-Mixed Social Media Text alongside other experiments. Our best performing system is a Transfer Learning-based model that fine-tunes XLM-RoBERTa, a transformer-based multilingual masked language model, on monolingual English and Spanish data and Spanish-English code-mixed data. Our system outperforms the official task baseline by achieving a 70.1{\%} average F1-Score on the official leaderboard using the test set. For later submissions, our system manages to achieve a 75.9{\%} average F1-Score on the test set using CodaLab username {``}ahmed0sultan{''}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sultan-etal-2020-wessa">
<titleInfo>
<title>WESSA at SemEval-2020 Task 9: Code-Mixed Sentiment Analysis Using Transformers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Sultan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mahmoud</namePart>
<namePart type="family">Salim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amina</namePart>
<namePart type="family">Gaber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Islam</namePart>
<namePart type="family">El Hosary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we describe our system submitted for SemEval 2020 Task 9, Sentiment Analysis for Code-Mixed Social Media Text alongside other experiments. Our best performing system is a Transfer Learning-based model that fine-tunes XLM-RoBERTa, a transformer-based multilingual masked language model, on monolingual English and Spanish data and Spanish-English code-mixed data. Our system outperforms the official task baseline by achieving a 70.1% average F1-Score on the official leaderboard using the test set. For later submissions, our system manages to achieve a 75.9% average F1-Score on the test set using CodaLab username “ahmed0sultan”.</abstract>
<identifier type="citekey">sultan-etal-2020-wessa</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.181</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.181</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1342</start>
<end>1347</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T WESSA at SemEval-2020 Task 9: Code-Mixed Sentiment Analysis Using Transformers
%A Sultan, Ahmed
%A Salim, Mahmoud
%A Gaber, Amina
%A El Hosary, Islam
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F sultan-etal-2020-wessa
%X In this paper, we describe our system submitted for SemEval 2020 Task 9, Sentiment Analysis for Code-Mixed Social Media Text alongside other experiments. Our best performing system is a Transfer Learning-based model that fine-tunes XLM-RoBERTa, a transformer-based multilingual masked language model, on monolingual English and Spanish data and Spanish-English code-mixed data. Our system outperforms the official task baseline by achieving a 70.1% average F1-Score on the official leaderboard using the test set. For later submissions, our system manages to achieve a 75.9% average F1-Score on the test set using CodaLab username “ahmed0sultan”.
%R 10.18653/v1/2020.semeval-1.181
%U https://aclanthology.org/2020.semeval-1.181
%U https://doi.org/10.18653/v1/2020.semeval-1.181
%P 1342-1347
Markdown (Informal)
[WESSA at SemEval-2020 Task 9: Code-Mixed Sentiment Analysis Using Transformers](https://aclanthology.org/2020.semeval-1.181) (Sultan et al., SemEval 2020)
ACL