@inproceedings{herath-etal-2020-adelaidecyc,
title = "{A}delaide{C}y{C} at {S}em{E}val-2020 Task 12: Ensemble of Classifiers for Offensive Language Detection in Social Media",
author = "Herath, Mahen and
Atapattu, Thushari and
Dung, Hoang Anh and
Treude, Christoph and
Falkner, Katrina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.198",
doi = "10.18653/v1/2020.semeval-1.198",
pages = "1516--1523",
abstract = "This paper describes the systems our team (AdelaideCyC) has developed for SemEval Task 12 (OffensEval 2020) to detect offensive language in social media. The challenge focuses on three subtasks {--} offensive language identification (subtask A), offense type identification (subtask B), and offense target identification (subtask C). Our team has participated in all the three subtasks. We have developed machine learning and deep learning-based ensembles of models. We have achieved F1-scores of 0.906, 0.552, and 0.623 in subtask A, B, and C respectively. While our performance scores are promising for subtask A, the results demonstrate that subtask B and C still remain challenging to classify.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="herath-etal-2020-adelaidecyc">
<titleInfo>
<title>AdelaideCyC at SemEval-2020 Task 12: Ensemble of Classifiers for Offensive Language Detection in Social Media</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mahen</namePart>
<namePart type="family">Herath</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thushari</namePart>
<namePart type="family">Atapattu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hoang</namePart>
<namePart type="given">Anh</namePart>
<namePart type="family">Dung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christoph</namePart>
<namePart type="family">Treude</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katrina</namePart>
<namePart type="family">Falkner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the systems our team (AdelaideCyC) has developed for SemEval Task 12 (OffensEval 2020) to detect offensive language in social media. The challenge focuses on three subtasks – offensive language identification (subtask A), offense type identification (subtask B), and offense target identification (subtask C). Our team has participated in all the three subtasks. We have developed machine learning and deep learning-based ensembles of models. We have achieved F1-scores of 0.906, 0.552, and 0.623 in subtask A, B, and C respectively. While our performance scores are promising for subtask A, the results demonstrate that subtask B and C still remain challenging to classify.</abstract>
<identifier type="citekey">herath-etal-2020-adelaidecyc</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.198</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.198</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1516</start>
<end>1523</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AdelaideCyC at SemEval-2020 Task 12: Ensemble of Classifiers for Offensive Language Detection in Social Media
%A Herath, Mahen
%A Atapattu, Thushari
%A Dung, Hoang Anh
%A Treude, Christoph
%A Falkner, Katrina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F herath-etal-2020-adelaidecyc
%X This paper describes the systems our team (AdelaideCyC) has developed for SemEval Task 12 (OffensEval 2020) to detect offensive language in social media. The challenge focuses on three subtasks – offensive language identification (subtask A), offense type identification (subtask B), and offense target identification (subtask C). Our team has participated in all the three subtasks. We have developed machine learning and deep learning-based ensembles of models. We have achieved F1-scores of 0.906, 0.552, and 0.623 in subtask A, B, and C respectively. While our performance scores are promising for subtask A, the results demonstrate that subtask B and C still remain challenging to classify.
%R 10.18653/v1/2020.semeval-1.198
%U https://aclanthology.org/2020.semeval-1.198
%U https://doi.org/10.18653/v1/2020.semeval-1.198
%P 1516-1523
Markdown (Informal)
[AdelaideCyC at SemEval-2020 Task 12: Ensemble of Classifiers for Offensive Language Detection in Social Media](https://aclanthology.org/2020.semeval-1.198) (Herath et al., SemEval 2020)
ACL