@inproceedings{shatilov-etal-2020-randomseed19,
title = "Randomseed19 at {S}em{E}val-2020 Task 10: Emphasis Selection for Written Text in Visual Media",
author = "Shatilov, Aleksandr and
Gordeev, Denis and
Rey, Alexey",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.220",
doi = "10.18653/v1/2020.semeval-1.220",
pages = "1685--1690",
abstract = "This paper describes our approach to emphasis selection for written text in visual media as a solution for SemEval 2020 Task 10. We used an ensemble of several different Transformer-based models and cast the task as a sequence labeling problem with two tags: {`}I{'} as {`}emphasized{'} and {`}O{'} as {`}non-emphasized{'} for each token in the text.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shatilov-etal-2020-randomseed19">
<titleInfo>
<title>Randomseed19 at SemEval-2020 Task 10: Emphasis Selection for Written Text in Visual Media</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aleksandr</namePart>
<namePart type="family">Shatilov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Denis</namePart>
<namePart type="family">Gordeev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexey</namePart>
<namePart type="family">Rey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our approach to emphasis selection for written text in visual media as a solution for SemEval 2020 Task 10. We used an ensemble of several different Transformer-based models and cast the task as a sequence labeling problem with two tags: ‘I’ as ‘emphasized’ and ‘O’ as ‘non-emphasized’ for each token in the text.</abstract>
<identifier type="citekey">shatilov-etal-2020-randomseed19</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.220</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.220</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1685</start>
<end>1690</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Randomseed19 at SemEval-2020 Task 10: Emphasis Selection for Written Text in Visual Media
%A Shatilov, Aleksandr
%A Gordeev, Denis
%A Rey, Alexey
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F shatilov-etal-2020-randomseed19
%X This paper describes our approach to emphasis selection for written text in visual media as a solution for SemEval 2020 Task 10. We used an ensemble of several different Transformer-based models and cast the task as a sequence labeling problem with two tags: ‘I’ as ‘emphasized’ and ‘O’ as ‘non-emphasized’ for each token in the text.
%R 10.18653/v1/2020.semeval-1.220
%U https://aclanthology.org/2020.semeval-1.220
%U https://doi.org/10.18653/v1/2020.semeval-1.220
%P 1685-1690
Markdown (Informal)
[Randomseed19 at SemEval-2020 Task 10: Emphasis Selection for Written Text in Visual Media](https://aclanthology.org/2020.semeval-1.220) (Shatilov et al., SemEval 2020)
ACL