@inproceedings{mosquera-2020-amsqr,
title = "Amsqr at {S}em{E}val-2020 Task 12: Offensive Language Detection Using Neural Networks and Anti-adversarial Features",
author = "Mosquera, Alejandro",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.250/",
doi = "10.18653/v1/2020.semeval-1.250",
pages = "1898--1905",
abstract = "This paper describes a method and system to solve the problem of detecting offensive language in social media using anti-adversarial features. Our submission to the SemEval-2020 task 12 challenge was generated by an stacked ensemble of neural networks fine-tuned on the OLID dataset and additional external sources. For Task-A (English), text normalisation filters were applied at both graphical and lexical level. The normalisation step effectively mitigates not only the natural presence of lexical variants but also intentional attempts to bypass moderation by introducing out of vocabulary words. Our approach provides strong F1 scores for both 2020 (0.9134) and 2019 (0.8258) challenges."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mosquera-2020-amsqr">
<titleInfo>
<title>Amsqr at SemEval-2020 Task 12: Offensive Language Detection Using Neural Networks and Anti-adversarial Features</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alejandro</namePart>
<namePart type="family">Mosquera</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes a method and system to solve the problem of detecting offensive language in social media using anti-adversarial features. Our submission to the SemEval-2020 task 12 challenge was generated by an stacked ensemble of neural networks fine-tuned on the OLID dataset and additional external sources. For Task-A (English), text normalisation filters were applied at both graphical and lexical level. The normalisation step effectively mitigates not only the natural presence of lexical variants but also intentional attempts to bypass moderation by introducing out of vocabulary words. Our approach provides strong F1 scores for both 2020 (0.9134) and 2019 (0.8258) challenges.</abstract>
<identifier type="citekey">mosquera-2020-amsqr</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.250</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.250/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1898</start>
<end>1905</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Amsqr at SemEval-2020 Task 12: Offensive Language Detection Using Neural Networks and Anti-adversarial Features
%A Mosquera, Alejandro
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F mosquera-2020-amsqr
%X This paper describes a method and system to solve the problem of detecting offensive language in social media using anti-adversarial features. Our submission to the SemEval-2020 task 12 challenge was generated by an stacked ensemble of neural networks fine-tuned on the OLID dataset and additional external sources. For Task-A (English), text normalisation filters were applied at both graphical and lexical level. The normalisation step effectively mitigates not only the natural presence of lexical variants but also intentional attempts to bypass moderation by introducing out of vocabulary words. Our approach provides strong F1 scores for both 2020 (0.9134) and 2019 (0.8258) challenges.
%R 10.18653/v1/2020.semeval-1.250
%U https://aclanthology.org/2020.semeval-1.250/
%U https://doi.org/10.18653/v1/2020.semeval-1.250
%P 1898-1905
Markdown (Informal)
[Amsqr at SemEval-2020 Task 12: Offensive Language Detection Using Neural Networks and Anti-adversarial Features](https://aclanthology.org/2020.semeval-1.250/) (Mosquera, SemEval 2020)
ACL