@inproceedings{boriola-paetzold-2020-utfpr,
title = "{UTFPR} at {S}em{E}val 2020 Task 12: Identifying Offensive Tweets with Lightweight Ensembles",
author = "Boriola, Marcos Aur{\'e}lio Hermogenes and
Paetzold, Gustavo Henrique",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.297",
doi = "10.18653/v1/2020.semeval-1.297",
pages = "2232--2236",
abstract = "Offensive language is a common issue on social media platforms nowadays. In an effort to address this issue, the SemEval 2020 event held the OffensEval 2020 shared task where the participants were challenged to develop systems that identify and classify offensive language in tweets. In this paper, we present a system that uses an Ensemble model stacking a BOW model and a CNN model that led us to place 29th in the ranking for English sub-task A.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="boriola-paetzold-2020-utfpr">
<titleInfo>
<title>UTFPR at SemEval 2020 Task 12: Identifying Offensive Tweets with Lightweight Ensembles</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="given">Aurélio</namePart>
<namePart type="given">Hermogenes</namePart>
<namePart type="family">Boriola</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gustavo</namePart>
<namePart type="given">Henrique</namePart>
<namePart type="family">Paetzold</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Offensive language is a common issue on social media platforms nowadays. In an effort to address this issue, the SemEval 2020 event held the OffensEval 2020 shared task where the participants were challenged to develop systems that identify and classify offensive language in tweets. In this paper, we present a system that uses an Ensemble model stacking a BOW model and a CNN model that led us to place 29th in the ranking for English sub-task A.</abstract>
<identifier type="citekey">boriola-paetzold-2020-utfpr</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.297</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.297</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>2232</start>
<end>2236</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UTFPR at SemEval 2020 Task 12: Identifying Offensive Tweets with Lightweight Ensembles
%A Boriola, Marcos Aurélio Hermogenes
%A Paetzold, Gustavo Henrique
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F boriola-paetzold-2020-utfpr
%X Offensive language is a common issue on social media platforms nowadays. In an effort to address this issue, the SemEval 2020 event held the OffensEval 2020 shared task where the participants were challenged to develop systems that identify and classify offensive language in tweets. In this paper, we present a system that uses an Ensemble model stacking a BOW model and a CNN model that led us to place 29th in the ranking for English sub-task A.
%R 10.18653/v1/2020.semeval-1.297
%U https://aclanthology.org/2020.semeval-1.297
%U https://doi.org/10.18653/v1/2020.semeval-1.297
%P 2232-2236
Markdown (Informal)
[UTFPR at SemEval 2020 Task 12: Identifying Offensive Tweets with Lightweight Ensembles](https://aclanthology.org/2020.semeval-1.297) (Boriola & Paetzold, SemEval 2020)
ACL