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Abstract

In this paper, we present language model system submitted to SemEval-2020 Task 4 competition:
”Commonsense Validation and Explanation”. We participate in two subtasks for subtask A:
validation and subtask B: Explanation. We implemented with transfer learning using pretrained
language models (BERT, XLNet, RoBERTa, and ALBERT) and fine-tune them on this task. Then
we compared their characteristics in this task to help future researchers understand and use these
models more properly. The ensembled model better solves this problem, making the model’s
accuracy reached 95.9% on subtask A, which just worse than human’s by only 3% accuracy.

1 Introduction

This task (Wang et al., 2019)is to evaluate how well a model can do for sense making on English data
set by its ability to judge whether natural language sentences are not in line with common sense and
explain the reasons. To thoroughly evaluate the model, three subtasks are designed in (Wang et al., 2020):
a) Subtask A Validation - Given two statements with similar structures, the task is to discern which
statement relatively makes sense and which one does not. b) Subtask B Explanation(Multiple-choices) -
From the three candidate reasons given, choose the reason that is most likely to explain a statement that
doesn’t make sense. c) Subtask C Explanation(Generation) - Generating explanations for non-common
sense statements. Natural Language Understanding (NLU) has drawn an increasing amount of research
attention recently. Although some well-performed end-to-end model even show better performances than
humans on some benchmarks, they are still far from human on common sense. If a model lack of common
sense processes data that requires common sense, the performance of the model may drop dramatically,
which is a sign for poor robustness. However, building models that are robust to adversarial attacks is
essential(Yang et al., 2020). Therefore, the importance of commonsense reasoning is not only confined to
NLU system, it should also be expanded to other systems.

Many similar tasks have been studied and solved before this task was proposed. Previous attempts on
solving common sense challenge usually involve heavy utilization of annotated knowledge bases(Peng et
al., 2015), rule-based reasoning(Bailey et al., 2015), or hand-crafted features(Schüller, 2014). Over time,
the advantages of the knowledge base gradually emerged from other methods, and researchers are more
inclined to use this method to solve such problems. Simple models based on distributional representations
perform poorly on this task, despite doing well on selection preference, but injecting manually elicited
knowledge about entity properties provides a substantial performance boost(Wang et al., 2018). However,
using annotated knowledge bases is a expensive approach while unsupervised training is done on text
corpora which can be cheaply curated. Nowadays, neural LMs having achieved great success being used
as feature representations for a sentence, or a paragraph, which improves NLP applications in a large
scale such as question answering, sentiment analysis, machine translation, etc. The combined evidence
suggests that LMs trained on a extensive amount of unlabeled data can capture many aspects of natural
language and the world’s knowledge, especially commonsense information. The success of previous work
of using language models to solve Winograd Schemas Challenge further confirms the inferences above.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
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By looking at probability ratio at every word position. Trieu(2018) used LM to score multiple choice
questions posed by commonsense reasoning tests. This work inspired us to make use of the capability of
capturing commonsense information. Whereas unsupervised approach doesn’t need expensive knowledge
bases and success of previous LM models, we present a transformer-based approach where a pretrained
language model has been fine-tuned on data set of this task. We voted and weighted the results of different
models and the same model with different training parameters. Finally, the ensembled model using the
weighting method works best.

It is found that the results of some models are similar, while others are different. This is related to
the structure of different models, the training data and training time, etc. Therefore, we believe the
performance can be improved by ensemble learning for only complementary models can correct each
other to get better results. The ensembled model achieves great result, ranking in official test evaluation
6th and 11th place in subtasks A and B, respectively. Our best model achieved in official test evaluation
accuracy of 95.9% for subtask A and 90.8% for subtask B. In addition, we also made a comprehensive
analysis of the data of task A. We found that data can be classified by the structure of the sentence since
the data set of task A can be divided into 3 categories, and the details will be explained in Section 3 later.
Our model does not deal with different types of data with different approaches separately, but the future
model proposed for these characteristics may better solve the task.

2 Models

We trained a large variety of different models and combined the best of them in ensembles1 . For every
LM model, we just add a feed forward layer and a softmax layer to the end of it without change its original
structure. Voting weights and evaluation scores of different models are related. The weight sum equation
is defined as:

y =

N∑
i=1

wipi (1)

where y is the final prediction, N is the number of total model in ensembles, wi is the weight of i-th model
and pi is the prediction of i-th model. In this work, we denote the number of layers (i.e., Transformer
blocks) as L, the hidden size as H, the vocabulary embedding size as E,and the number of self-attention
heads as A, which is the same definition as the ALBERT. The architecture of the models ensemble is
shown as Figure 1.

2.1 BERT
With the release of Bidirectional Encoder Representation of Transformers(Devlin et al., 2019), the
pretrained and fine-tuning approach to many problems become popular. Many similar pretrained models
were designed and refresh the score of many benchmark. So we first fine-tuned BERT with our dataset.
BERT’s model architecture is a multi-layer bidirectional Transformer encoder based on the original
implementation described in (Vaswani et al., 2017). 6 checkpoints with different configuration are
provided, whose model sizes and the way to preprocess words are varied. We experimented on BERTBase

and BERTLarge.

2.2 XLNet
XLNet(Yang et al., 2019) has more training corpus than BERT and presents a new pre-trained way that
differ from BERT, which can help us discover analyse the effect of data size and pre-training method on
the task. XLNet is a language model, which is in line with ELMO, GPT and BERT. However, they are
exactly different in some way. To be precise, BERT belongs to autoencoding(AE) language model, which
means encoding sequence x = (x1...xT) to sequence y = (y1...yT), while autoregressive language
model predicts xi according to (x1...xi−1). Thanks to the use of both the above and the following
information, Bert achieved better results than GPT. However, Bert needs to introduce [mask] tags in
the pre-train stage to predict these masked tokens from the context, which leads to two main problems:

1The parameters of each model are released on https://github.com/zellford/
QiaoNing-at-SemEval-2020-Task-4-parameters
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Figure 1: The architecture of the models ensemble

Bert assumed that different [masks] were independent of each other and ignored the correlation between
[masks]; The input to BERT contains artificial symbols like [MASK] that never occur in downstream
tasks, which creates a pretrain-finetune discrepancy. Therefore, XLNet used two-stream self-attention
as the method of ”permutation and combination” of input sequences to put the following information in
the front, which gives the one-way model the ability to perceive the following information. In addition,
XLNet also integrates the relative positional encoding scheme and the segment recurrence mechanism
from Transformer-XL.

2.3 RoBERTa
Robustly optimized BERT Pretraining Approach(RoBERTa) is a replication study of BERT pretraining ,
which carefully evaluates the impact of key hyperparameters and training data size without modifying the
structure of BERT. We chose Roberta because it can be used as a good comparison object to compare
with BERT for the amount of data and the contribution of more adequate training, and the impact of
the different training methods compared to XLNet on common sense judgment. First, RoBERTa(Liu
et al., 2019) dynamically changes mask pattern applied to the train data instead of uses the same mask
for each training instance in every epoch. Second, to capture the relationship between two sentences,
BERT uses next sentence prediction(NSP) in train stage. Nevertheless RoBERTa abandons NSP and
presents a new training way called Full-Sentences, which can input multiple sentences. Third, training
with large mini-batches. Previous work in Neural Machine Translation has proved that in this way can
improve optimization speed and end-task performance. Finally, XLNet used 10 times more data than Bert,
resulting performance did indeed soar again. Of course, it also requires longer training.

2.4 ALBERT
According to the previous neural language model, a conclusion can be easily drawn that increasing model
size, training data and training time will definitely improve LM’s performance. As a new LM,on the
contrary, ALBERT(Lan et al., 2019) used less parameter to reduce the need of memory capacity of
GPU/TPU and shared parameters weight, which will improve parameter efficiency, to fasten training
speed. As for pre-train task, ALBERT presented sentence order prediction(SOP) to replace NSP. The SOP
loss uses the same technique as BERT (two consecutive segments in the same document) as a positive
example, and uses the same two consecutive segments (but the order is reversed) as a negative example.
In addition to the three main optimization points mentioned above, drop-out layer is removed.

3 Data

Commonsense Validation and Explanation Dataset (ComVE) is released by the organizers of this task.
Each instance in subtask A consists of 2 similar sentences, but only one of them makes sense while the
other does not. As for the subtask B, every invalid sentence are followed by three sentence as the optional
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Type Choice A Choice B Label
Sample a) The sky is blue The sky is underground 1
Sample b) the man fed the snake a mouse the man fed the mouse a snake 1
Sample c) The bike overtake the car The red car went by very fast 0

Table 1: Examples of three types of subtask A test samples

explanation, in which only one is correct. For the same invalid sentence in subtask C, 3 referential reasons
are given as the correct answer to evaluate the reasons that machine generates. All samples are written
by data annotators, then researchers examines them case by case. Ensuring the consistency of samples,
three principles are followed: First, make everyone can understand question with their commonsense
easily, that is to say complex knowledge is not needed. Second, important words like entities and activities
should be contained in confusing reasons in the against-common-sense statements. Third, the reason why
a statement is confusing is related to the context. The tasks release the dataset into three different parts,
which are the training dataset, develop dataset and testing dataset. The summary of dataset distribution is
concluded in the Table 1. From the table, it is obviously that organizers intentionally avoid the impact of
uneven distribution of answers.

3.1 Data Analysis

At the end of the evaluation, although we tried different hyperparameter and ensemble many well fine-tuned
model, the score on developing dataset still became steady. Thus we turn to discover the characteristics
of the data. By checking dataset case by case, we find that all samples can be classified into 3 types and
examples are shown in Table 1: a) there is only one difference between most wrong samples and correct
ones, like numbers, entities, action and etc. b) Keyword order replacement leads to ambiguity in sentence
meaning. c) We take the rest as the third category because these examples have no obvious characteristics.
Some are talking about the same subject but the sentence expression is completely different, while others
are even not talking about the same thing at all. Fortunately, the first two types of examples with clear
structure account for most of the dataset. Therefore, processing on certain type confusing samples may
further improve the performance. For a) type sample, masking the different word in sentence pair and
calculate the probabilities of original words can be a good method. As for subtask C, when generating the
reasons for type b) sample, reason template like ”A is ... than B” can be used.

4 Experiments and Results

The evaluation metric of first two subtasks is accuracy and we use BLUE to evaluate subtask C. In each
experiment, model is trained on 1080Ti, and batch size is set as big as possible to ensure rapid convergence
of the model. Due to labels of test dataset are kept by organizers, we tune the hyperparameters on
development dataset. Because different language models use different corpora, hyperparameters, and
model structures during pre-training, we believe that these differences will affect the performance of the
model. In order to more fully reflect the ability of each model on this task, we did not introduce additional
training data when fine-tuning, retaining the data provided by the organizer. We only participate in first
two subtasks. For subtask A, we input a sentence pair at a time, the output is the label that indicating which
sentence is invalid. For subtask B, a multiple choices problem , we concatenate the invalid statement with
each optional reason as inputs. Then the scores of each sentence-reason pair are fed into softmax layer
to get final output. Finally, we weight each model’s result according to evaluation score on developing
model, make the result less than 0.5 as 0, otherwise as 1.

In Tables 2a and 2b, we report the best results of each model of final test dataset. When fine-tuning
different types of BERT, we found that the case-insensitive model is better than the case-sensitive model,
and the larger model (BERT large) will perform better. One surprising observation from the table shows
the performance of XLNet is far behind the BERT‘s, let alone other improved models based on BERT. We
attribute this phenomenon to the way XLNet training which does not include NSP-like tasks. Although
XLNet surpasses BERT on many benchmarks, this sign indicates that it still lacks the ability to understand
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the relationship between sentences. In contrast, ALBERT’s accuracy is among the best. We think it
is because ALBERT replaced NSP with SOP as a pre-training task, which forces the model to learn
finer-grained distinctions about discourse-level coherence properties. In addition, when we look at some
of our ensemble model predictions that range from 0.4 to 0.6, which means the feasibility of the results is
extremely low. The reason for the ambiguous result is that the predictions given by BERT and RoBERTa
on these samples are consistent and completely opposite to the predictions of ALBERT. We replaced the
ambiguous predictions with predictions of each individual model to find out which model can better solve
these samples. So we got the result of the Table 2c.

System Accuracy
BERT(B) 83.1
BERT(L) 90.1
XLNet(B) 81.6
RoBERTa(B) 87.4
RoBERTa(L) 93.5
ALBERT(xxL) 95.3
Ensemble 95.9

(a) Subtask A results

System Accuracy
BERT(L) 85.7
XLNet(L) 90.3
RoBERTa(L) 87.0
Ensemble 91.2

(b) Subtask B results

System Accuracy
BERT(L) 96.2
XLNet(B) 95.7
RoBERTa(L) 96.2
ALBERT(xxL) 95.3

(c) Subtask A post-results

Table 2: Results on test data where B denotes Base and L denotes Large, and in Table 2c ambiguous
predictions (between 0.4 and 0.6) are replaced by each model ’s own predictions.

Obviously, ALBERT has insufficient ability to deal with these problems. Surprisingly, when the overall
performance of ALBERT and XLNet differ by 13.7%, XLNet still has a higher accuracy on this type of
problem. Therefore, we dig into the predictions of each model to find the cause of this phenomenon. We
found that for two-thirds of the samples our models give exactly the same predictions. These confident
samples almost belong to type a), and the correct sentences are often found in the article, on the contrary,
the wrong sentences will hardly appear. As the prediction divergence of the model becomes larger, the
number of sentences of type b) and type c) gradually increases, but this is not the most obvious change.
The most important thing is that the differences between the options of these samples become less obvious.
In other words, all the options may not have similar sentences in the corpus. The key to judging these
problems is often related to the hidden characteristics of certain words, so this requires our model to
understand the comprehensive meaning of each word. Compared with other models, ALBERT has a
similar model size, more difficult training tasks and even more data volume, but the performance of the
implicit word meaning is not good. It is noteworthy that in order to reduce the amount of parameters,
which will be a significant parameter reducing when H >> E, ALBERT reduces the dimension of word
embedding. Excluding the above-mentioned factors that affect the performance of the model, we think
this is because the width of embedding word of ALBERT is at least 6 times smaller than other models that
can’t fully express the meaning of words. Finally, the ensembled model achieves better result, ranking in
official test evaluation 6th and 11th place in subtasks A and B, respectively.

5 Conclusion

The ability of common sense validation and explanation is very important for most models. Most obviously,
this will directly affect the rationality of the generated model output. The large amount and diversity
of common sense poses great challenges to this task. In addition, many common sense expressions are
obscure, thus we need to understand the meaning contained in the vocabulary in order to judge correctly,
which further increases the model’s requirements for the accuracy of word representation. The current
neural network models are often data-driven, while the annotated data is often limited and requires a
lot of manual labeling. In such case, we proposed transfer learning to handle this challenge. From
our experiments, we can draw the following three main conclusions: a) Neural language model fully
qualified for commonsense validation and explanation. We attribute this to the powerful word and sentence
representation capabilities of language models. b) The inconsistency of task of pre-training and fine-tuning
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will badly hurt the performance. c) A larger amount of corpus and more parameters will enhance the
common sense of the model. At the same time, the content of the corpus is equally important.
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