@inproceedings{ben-rim-okazaki-2020-swagex,
title = "{SWAG}ex at {S}em{E}val-2020 Task 4: Commonsense Explanation as Next Event Prediction",
author = "Ben Rim, Wiem and
Okazaki, Naoaki",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.51",
doi = "10.18653/v1/2020.semeval-1.51",
pages = "422--429",
abstract = "We describe the system submitted by the SWAGex team to the SemEval-2020 Commonsense Validation and Explanation Task. We use multiple methods on the pre-trained language model BERT (Devlin et al., 2018) for tasks that require the system to recognize sentences against commonsense and justify the reasoning behind this decision. Our best performing model is BERT trained on SWAG and fine-tuned for the task. We investigate the ability to transfer commonsense knowledge from SWAG to SemEval-2020 by training a model for the Explanation task with Next Event Prediction data",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ben-rim-okazaki-2020-swagex">
<titleInfo>
<title>SWAGex at SemEval-2020 Task 4: Commonsense Explanation as Next Event Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wiem</namePart>
<namePart type="family">Ben Rim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe the system submitted by the SWAGex team to the SemEval-2020 Commonsense Validation and Explanation Task. We use multiple methods on the pre-trained language model BERT (Devlin et al., 2018) for tasks that require the system to recognize sentences against commonsense and justify the reasoning behind this decision. Our best performing model is BERT trained on SWAG and fine-tuned for the task. We investigate the ability to transfer commonsense knowledge from SWAG to SemEval-2020 by training a model for the Explanation task with Next Event Prediction data</abstract>
<identifier type="citekey">ben-rim-okazaki-2020-swagex</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.51</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.51</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>422</start>
<end>429</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SWAGex at SemEval-2020 Task 4: Commonsense Explanation as Next Event Prediction
%A Ben Rim, Wiem
%A Okazaki, Naoaki
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F ben-rim-okazaki-2020-swagex
%X We describe the system submitted by the SWAGex team to the SemEval-2020 Commonsense Validation and Explanation Task. We use multiple methods on the pre-trained language model BERT (Devlin et al., 2018) for tasks that require the system to recognize sentences against commonsense and justify the reasoning behind this decision. Our best performing model is BERT trained on SWAG and fine-tuned for the task. We investigate the ability to transfer commonsense knowledge from SWAG to SemEval-2020 by training a model for the Explanation task with Next Event Prediction data
%R 10.18653/v1/2020.semeval-1.51
%U https://aclanthology.org/2020.semeval-1.51
%U https://doi.org/10.18653/v1/2020.semeval-1.51
%P 422-429
Markdown (Informal)
[SWAGex at SemEval-2020 Task 4: Commonsense Explanation as Next Event Prediction](https://aclanthology.org/2020.semeval-1.51) (Ben Rim & Okazaki, SemEval 2020)
ACL