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Abstract

In this paper, we present our submission for SemEval 2020 Task 4 - Commonsense Validation and
Explanation (ComVE). The objective of this task was to develop a system that can differentiate
statements that make sense from the ones that don’t. ComVE comprises of three subtasks to
challenge and test a system’s capability in understanding commonsense knowledge from various
dimensions. Commonsense reasoning is a challenging task in the domain of natural language
understanding and systems augmented with it can improve performance in various other tasks
such as reading comprehension, and inferencing.

We have developed a system that leverages commonsense knowledge from pretrained language
models trained on huge corpus such as RoBERTa, GPT2, etc. Our proposed system validates the
reasonability of a given statement against the backdrop of commonsense knowledge acquired by
these models and generates a logical reason to support its decision. Our system ranked 2nd in
subtask C with a BLEU score of 19.3, which by far is the most challenging subtask as it required
systems to generate the rationale behind the choice of an unreasonable statement. In subtask A and
B, we achieved 96% and 94% accuracy respectively standing at 4th position in both the subtasks.

1 Introduction

In today’s digital age, information is shared widely in textual format via e-mails, news articles, social
media posts and messages, blogs, internet forums, etc. We are now surrounded by textual information
more than ever, which demands a meaningful understanding of a text by machines. Machines augmented
with commonsense reasoning will be a key step towards achieving this. ‘Commonsense Knowledge’
also referred to as the background knowledge, is the understanding of the everyday world and the art of
drawing inferences by manipulating the knowledge gathered. Humans are rational and have acquired
a sense of reasoning by combining facts and beliefs from their day to day life. To an average person
reasoning the fact that a person can have a pet dog but not pet dinosaur comes naturally and is fairly
straightforward. Commonsense knowledge is assumed to be known to all and people typically tend to
omit this while communicating with others, which makes it more challenging.

Current Natural Language Understanding (NLU) systems assisted with semantic representations,
statistical methods, and distributional representations have shown better performance than humans on
many benchmarks but there is a growing concern that these systems scratch only the surface of the human
level of understanding of the world and thus are too shallow. Natural language is complex in nature and
NLU systems have tried to derive useful meaning by capturing the context i.e. neighboring words and
sentences but these systems fail miserably when the context is restricted or omitted. Such cases call
for systems to delve deeper into understanding the background knowledge enjoyed by all humans. For
a commonsense deprived machine, understanding that the sentence ‘he put books in his pencil box’ is
against common sense as ‘a book is much bigger than a pencil box’ is difficult in the absence of the
knowledge about the size of books in comparison with the size of a pencil box. Since the existing systems
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Subtask A: Validation
S0: He put a turkey into the fridge.
S1: He put an elephant into the fridge.

Subtask B: Explanation
(Multi-Choice)

Statement: He put an elephant into the fridge.
Option A: An elephant is much bigger than a fridge.
Option B: Elephants are usually white while fridges are usually white.
Option C: An elephant cannot eat a fridge.

Subtask C: Explanation
(Generation)

Statement: He put an elephant into the fridge.
Referential Reasons:
1. An elephant is much bigger than a fridge.
2. A fridge is much smaller than an elephant.
3. Most of the fridges aren’t large enough to contain an elephant.

Table 1: Examples from the ComVE dataset.

either do not possess this knowledge or are rather weak in reasoning beyond the data provided to them.
Through this task, we aim to empower machines to acquire this knowledge and perform better in many
natural language tasks like question answering, fake news detection, etc.

ComVE comprises of three subtasks, subtask A is a validation task where a system has to choose the
unreasonable statement between a pair of given statements. Under subtask B the participating system has
to pick up the reason which explains the rationale behind the unreasonable statement selected in subtask
A. Subtask C, which by far is the most challenging task and requires the system to generate the reason
explaining the argument behind its choice in the first task. We have illustrated some samples from the
dataset for all the three subtasks in Table 1.

Under this task, we have developed a system that leverages commonsense knowledge gained by
pretrained language models from their huge training corpora. We have used models like BERT, RoBERTa,
GPT2, etc. Our system seeks to utilize the language model’s world knowledge and identify commonsense
facts in the task-specific dataset with task-centric finetuning. The model with little finetuning and task-
specific modifications such as transforming the input and adding a score comparator achieved significant
gains on all the subtasks. Our system ranked 2nd1 in subtask C (Explanation with Generation) with a
BLEU score of 19.3. In subtask A and B, we achieved 96% and 94% accuracy respectively standing at
4th rank in both the subtasks.

This paper is organized as follows, in Section 2, we briefly review some of the popular works in the
domain of commonsense. In Section 3, we describe the task and the dataset. Section 4 gives details of our
system and individual setup for each subtask. In Section 5, we have dicussed the experiments and the
results. We conclude the paper in Section 6.

2 Related work

In the recent past, there have been several lines of research focussing on commonsense reasoning. Multiple
tasks and datasets have been proposed which tests machine’s intelligence pivoting on commonsense,
like The Winograd Schema Challenge (Levesque et al., 2012) which aims to resolve ambiguities arising
out of pronouns, using commonsense. Mostafazdeh et al., (2016) released the ROCStories corpus and
introduced a Story Cloze Test, in which a system is given a four-sentence ‘context’ and two alternative
endings to the story, called the ‘right ending’ and the ‘wrong ending’. This task challenges a system
to understand the context and predict the correct ending. Another dataset, SWAG (Zellers et al., 2018)
involves predicting the next scene given the current one to evaluate grounded commonsense inference. It’s
also a multiple-choice dataset with 4 possible continuations to the given description. Devlin et al., (2018)
finetuned their BERTLARGE model on the SWAG dataset to beat the human performance and achieve

1Leaderboard link: https://competitions.codalab.org/competitions/21080#results
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state-of-the-art results with 86.3% accuracy on the test set.
All of these works involve multiple-choice datasets, where one has to choose the right option without

providing any justification as to why the system chose a particular option. This raises a concern in the
system’s capability in actually understanding the choice made. None of the above work inspects a direct
understanding of commonsense by demanding a logical reason for the choice. Wang et al,. (2019) released
a dataset, which requires a system to choose an unreasonable statement from a given pair and also predict
the right reason behind its choice. They also utilized state-of-the-art language models (LM) like BERT for
Sen-Making and Explanation task which are similar to subtask A and B respectively of ComVE. However,
they have reported a decline in performance on finetuning BERT. They achieved the best result with
finetuned ELMO in the Sen-Making task and with pretrained BERT in the Explanation task.

Rajani et al., (2019) developed a Commonsense Auto-Generated Explanation (CAGE) framework for
commonsenseQA task (Talmor et al., 2018). CAGE in its main approach of ‘Reasoning’ finetunes a
language model conditioned on the question and all the plausible answer choices. The language model
utilized Common Sense Explanations (CoS-E) as a referential reason while training. CoS-E is a manually
constructed dataset comprising of reasons given by users who in turn were provided the question, all
answer choices, and the correct label. LM trained via this approach was used to augment a classifier to
predict the answer for the multiple-choice question posed initially. They leveraged CoS-E to assist in
predicting the right answer. We have taken inspiration from their work in our subtask C to generate a
logical reason as to why the unreasonable statement is against commonsense.

Subtask A Subtask B
Dataset Label-0 Label-1 Total
Train 4979 5021 10000
Dev 518 479 997

Dataset A B C Total
Train 3195 3362 3443 10000
Dev 344 327 326 997

Table 2: Dataset decription for Subtasks A and B.

3 Task and Dataset Description

The ComVE was formulated as a three-stage problem, where different subtasks assess a system’s under-
standing of commonsense from a disparate perspective. The first subtask aims to empower the system to
differentiate an unreasonable statement from a reasonable one and is proposed as a ‘Validation’ task. The
next subtask, ‘Explanation with Multiple-Choice’ assess the system’s capability to choose the right reason
behind its choice for a particular statement to be unreasonable in the first subtask. The system’s rationality
is further tested by subtask C: ‘Explanation with Generation’, which expects the system to generate the
reason explaining the rationality behind the system’s choice of the irrational statement in subtask A. Table
1 shows an example of the dataset.

Subtask A is a two-class (or binary) classification problem, where a system has to choose from two
natural language statements with similar wordings which one makes sense and which one doesn’t. There
are 10,000 sentence pairs in the training data, with each instance being labeled as either 0 or 1 depending
on whether sentence 0 is unreasonable or sentence 1. The sentence pairs have been designed in a way that
it is fairly easy for a human to pick the right statement but cannot be easily detected by commonsense
deprived systems. Subtask B is a multi-class classification problem where a participating system has
to pick the key reason from three options justifying why a given statement does not make sense. The
training dataset for this subtask had 10,000 unreasonable sentences accompanied by three reasons for
each. Dataset also had three noisy samples where just two options were provided. Subtask C is a text
generation task where the objective is to generate a reason why the given statement is against common
sense. The training dataset consists of 10000 unreasonable sentences and three referential reasons for
each of them. We have provided the class-wise data distribution for the first two tasks in Table 2.

Dev data released for the evaluation phase had 997 samples for each subtask and hidden test data
on which systems were finally evaluated had 1000 samples without labels. During the final evaluation,
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subtasks were kicked off sequentially with subtask A being opened first, followed by subtask C, and at the
end, subtask B was started. This ensured that the there is no information leakage between the subtasks.
More information on the tasks and the dataset can be found in Wang et al., (2020).

4 System Description

Our systems leverage commonsense knowledge from pretrained language models via transfer learning,
thus we first briefly discuss the language models used in our system’s core in Section 4.1. Subsequently,
we explain the details of our models for each subtask. We have developed systems separately for each
subtask which can be combined in the desired manner for an end to end commonsense pipeline.

4.1 Overview of Pretrained Language Models

BERT: Bidirectional Encoder Representations for Transformers, (Devlin et al., 2018) is a pretrained deep
bidirectional transformer model producing context representations. It was trained on masked language
modeling and the next sentence prediction objectives. BERT representations can be fine-tuned to many
downstream NLP tasks by adding just one additional output layer for the target task, or it can be used as a
feature for task-specific architectures. Using a fine-tuning setting, BERT has advanced state-of-the-art
performances on a wide range of NLP tasks. We used pretrained BERTbase-uncased with 110M parameters
in our experiments.

ALBERT: Ian et al., (2019) introduced A Lite BERT (ALBERT) for learning language representations.
It has two parameter reduction techniques that help it to increase the training speed and reduce memory
consumption thus overcoming previous memory limitations of BERT. The authors have introduced the
concept of parameter sharing across layers to prevent the growth in trainable parameters as the network’s
depth increases. They introduced a self-supervised loss for sentence order prediction in place of ineffective
next sentence prediction of BERT. ALBERTlarge with 18M parameters was used in our experiments.

RoBERTa: Robustly Optimized BERT pre-training Approach (RoBERTa) (Liu et al., 2019) is an
adaptation of BERT architecture trained with larger batches on 160 GB data from various domains. The
paper mentioned that BERT was significantly undertrained and has the potential to outperform other
transformer-based models with the right amount of data and design choices. RoBERTa was trained by
dynamically modifying language masking while the next sentence prediction loss used in BERT was
dropped. Other improvising techniques like larger input text sequences, byte pair encoding are used in
training which seemingly improved the model performance in downstream tasks. It achieved state-of-the-
art results in 4 of the 9 GLUE benchmark tasks during the time of publishing. For our experiments, we
will be using RoBERTalarge which has 355M hyperparameters.

GPT-2: Generative Pretrained Transformer 2 (Radford et al., 2019) is a large transformer-based
language model trained on a dataset of 8 million web pages. GPT-2 is trained with a simple objective of
predicting the next token, given all of the previous tokens within some text. This model shares the same
architecture as GPT, with more than 10X the parameters and trained on more than 10X the amount of data.
It displays a broad set of capabilities, including the ability to generate conditional and unconditional text
samples of unprecedented quality. For downstream tasks involving text generation, the model performs
better than all the other transformer-based language models. We will be using GPT-2large model with
762M parameters for our experiments.

4.2 Subtask A

For subtask A, we fine-tuned several task-specific pretrained BERT based classifiers, where input is a
sentence and label is whether the sentence is unreasonable or not. Dataset for the classifiers was prepared
by splitting a given input pair into two separate sentences and each of these was passed through the
model to generate probability score for unreasonability. We have added a score comparison system on
top of the model to predict the final label for the sentence pair by comparing the unreasonability score
of both the sentences. Fine-tuning a BERT based model on our task consists of further training it on a
task-specific dataset with masked language modeling (MLM) loss. We conducted our first experiments
with a pretrained BERT model (BERT-CS). Systems with the same approach were implemented with
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Figure 1: System for Subtask A

ALBERT (ALBERT-CS) and RoBERTa (RoBERTa-CS) architectures where RoBERTa based system
seems most promising since it was trained on a large corpus and captures external knowledge convincingly.

4.3 Subtask B

Figure 2: System for Subtask B where, Phrase is a connecting negation phrase like, “This does not makes
sense because,”, S is an unreasonable statement, and BB-CS is the same as described in Figure 1.

Subtask B is a multiple-choice task where a system has to identify the key reason to explain the
irrationality of the given unreasonable statement (see Section 3). To achieve this, we have built a system
that can understand the relation between a choice and the unreasonable statement, and also comprehend
that the choice is justifying the logical reason behind it. To augment this further we have used connecting
negation phrases between the choices and the unreasonable statement.

We formulated the given problem as a three-way binary classification task for each option. The dataset
was transformed by constructing three input sequences per choice from the original sample. Each input
sequence is a concatenation of the given unreasonable statement, connecting negation phrase, and one of
the possible reasons. Connecting negation phrases like, “This does not makes sense because,” or “No,”,
helps in constraining the model to learn a choice that explains the unreasonability of the statement. The
system (see Figure 2) was developed by adding a task-specific layer on top of the pretrained models and
finetuning them on task-specific data with MLM objective. We trained it on the modified input sequence
as a binary classification problem with a softmax layer to produce a probability score for the sequence. An
additional score comparator was used to merge the three binary classifiers. The score comparator analyzes
scores from all three classifiers and arrives at the final prediction based on the maximum scoring sequence.
BERT was used as a pretrained language model to develop BERT-Single and similarly, RoBERTa-Single
was constructed with the RoBERTa language model, but our best performing system RoBERTa-Ens is an
ensemble of 4 RoBERTa-Single based models with slight differences in their training.

4.4 Subtask C

As described in Section 3, the dataset consists of 10,000 unreasonable statements with three referential
reasons each. In this subtask, we fine-tuned GPT-2 large model on the given training data and evaluated
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Figure 3: System for Subtask C

the system with the BLEU score. GPT-2 model has great capabilities to learn from raw text without the
need for explicit labeling. Hence, this property of GPT-2 has been exploited here instead of using an
encoder-decoder architecture to encode the unreasonable sentence and generate reason.

Each training row in the dataset has been converted to three separate samples based on the three
referential reasons leading to 30,000 total input dataset size. The input to the system is fed sample wise
instead of the original text chunk based training. Each sample is passed as Unreasonable Statement +
[No,]+ Referential Reason. The model was fine-tuned on the cross-entropy loss to predict the next token
at each step. We have used the beam search algorithm to generate the final output sequence instead of a
greedy approach. The system outputs the probability score for each token in vocabulary to be the next
element in the sequence. Following beam search, the top k sequences are separately appended with the
input to generate the next token and this process is repeated till we reach the < |endoftext| > token. The
generated reason is converted to lower case to avoid non-uniformity in the sentence structure leading to
better match with the referential reasons and thus increasing the system’s BLEU score.

5 Experiments and Evaluation

5.1 Subtask A

Table 3 shows the performance of the systems experimented for subtask A. From the results, we can
observe that the best results are obtained using RoBERTa-CS with an impressive accuracy of 96% on the
official test data. For RoBERTa-CS, we finetuned RoBERTalarge pretrained model with a learning rate of
1e-5, dropout probability of 0.15, and a batch size of 32 for 7 epochs. BERT-CS and ALBERT-CS have
achieved 87.7% and 81.1% accuracy respectively on the test data. Significant improvement of 8.3% by
RoBERTa-CS over BERT-CS can be attributed to rigorous training and wider training dataset covering
domains like news, stories, and Reddit of the pretrained RoBERTa. On samples where the model has to
understand the irrationality with respect to time, duration or season, etc. (see Table 3), we found that
RoBERTa-CS easily outperforms the others.

RoBERTa-CS was constructed with multiple task-specific components such as splitting our dataset
sample and feeding them individually to the model and the score comparator at the top. To verify the
necessity of these, we developed the RoBERTa-pairwise model. In the RoBERTa-pairwise, dataset format
is kept intact and the input is fed as a sentence pair ([CLS] + Sentence 0 + [SEP] + Sentence 1 + [SEP])
with a softmax layer on top of the existing RoBERTa architecture and score comparator was completely
shunned. It obtained 93.7% accuracy, recording a decline of 2.3% from RoBERTa-CS. Usually, BERT
based architectures are trained on pairwise tasks by combining inputs with a separator, which tends to
capture relations like: entailment, similarity, sentence order, etc. between the text pairs. Thus, when
we fine-tuned a system based on the pairwise input as in RoBERTa-pairwise, some noise might have
got added to the loss which has deteriorated the performance by struggling to capture a similar pairwise
relation which is absent in the sample. On the other hand, an individual way of feeding input to the system
captures the degree of reasonability of the statement and a simple comparison of the probability scores
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gives us the statement that is relatively more unreasonable.
We conducted an additional experiment by extracting final layer embeddings from the pretrained

RoBERTa model and applied logistic regression on those as an input (RoBERTa-LR). This approach
obtained an accuracy of 88.2% which is 7.8% less as compared to the best RoBERTa model. The results
are in-line with the expectations as an end-to-end trained model learns details of the provided data while
just applying a classification layer separately can’t tune the embeddings to capture reasonability in a
sentence. Yet, it has a minor gain of 0.5% over BERT-CS, which can be associated with better sentence
representation being learned by RoBERTa’s larger training corpus.

Model Acc.
RoBERTa-CS 96.0
RoBERTa-pairwise 93.7
RoBERTa + LR 88.2
BERT-CS 87.7
ALBERT-CS 81.1

Samples Predicted Label

S0: owls sleep at night
S1: owls sleep at day

RoBERTa-CS: S0
BERT-CS: S1
ALBERT-CS: S1

S0: December is the 13th month of a year
S1: December is the 12th month of a year

RoBERTa-CS: S0
BERT-CS: S1
ALBERT-CS: S1

Table 3: Result for Subtask A on the Test dataset (accuracy is in percentage). The second table shows a
comparative analysis of the different models on some dataset samples.

5.2 Subtask B

RoBERTa-Ens is an ensemble of 4 RoBERTa-Single models trained on different connecting phrases, such
as, “No,”, “, it is not true because”, and “This does not makes sense because,”. One of the RoBERTa
models for ensembling was trained on a new input sequence (“Unreasonable Sentence:” + Unreasonable
statement + “Reason:” + One of the Reason Choice) which used a phrase in English to inject the task-
specific information into the model. The ensemble is done by taking the average of probability from the 4
models for each given option and taking the option with the maximum score. The models are fine-tuned
for 5 to 6 epochs with a learning rate of 1e-5, dropout of 0.1, batch size of 64, and 250 as the warmup steps
for learning rate. It achieved an accuracy of 94% on the official test data as shown in Table 4. Among
the RoBERTa-Single models, the system with a simple “No,” connector performs the best with a 93.1%
accuracy. Similar to subtask A, BERT-Single model performs subpar as compared to RoBERTa-Single
with a drop of 10.6% accuracy.

Subtask B Subtask C
Model Accuracy (%)
RoBERTa-Ens 94.0
RoBERTa-Single + “No,” 93.1
BERT-Single 82.5

Model BLEU Score
GPT-2 + BMS 19.34
GPT-2 16.92

Table 4: Results on the test dataset for Subtask B and C have been presented in the first and second table
respectively.

5.3 Subtask C

In subtask C, GPT-2 model with beam search algorithm (GPT-2+BMS) was trained for a single epoch
with all referential reasons of a statement line by line (instead of a block of text) with a batch size of 64
and a maximum sequence length of 128. The unreasonable sentence and one of the reasons are combined
with a negating phrase, “No,” while feeding to the system. The above-mentioned system in conjunction
with k equal to 3 for beam search achieves a BLEU score of 19.34 and 2nd rank on the official leaderboard.
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Replacing greedy search in place of beam search for reason generation decreases the BLEU score by 2.42
(see Table 4).

The GPT-2+BMS system can generate coherent reasons for the majority of the samples, yet in some
cases, the system merely negated the input sentence to generate the reason as illustrated in Table 5.
Training the model for larger epochs generates more complex and precise reasons at the cost of decreasing
the BLEU score. This can be caused by the complexity of natural language where a reason can be explained
in many ways and the ComVE dataset appeared to be containing very simple sentences. Furthermore,
the BLEU score represents the precision of word order prediction and it doesn’t take sentence structure,
meaning, or recall into consideration which also justifies why the BLEU score dropped when the system
generated coherent but complex reasons. In such cases, evaluating on BLEU along with the ROGUE score
which captures recall of the generated sentence would have made more sense.

Unreasonable Statement Generated Reason

Good
Examples

A soldier shot with a guitar. A guitar is not a weapon.

It is easy to see the stars on a clear day. Stars appear in the night sky.

She went to the grocery store to get an aneurysm. An aneurysm is a medical condition.

She eats a pillow after her workout. Pillows are not edible.

Bad
Examples

London goes in this bus. A bus does not have wheels

A television plays audio only. A television does not play audio.

Table 5: In the above table we have shown some unreasonable statements from the dataset along with the
reason generated by our best model (GPT-2+BMS).

6 Conclusion and Future Work

In this work, we have described our system for SemEval-2020 Task 4 on common sense validation
and explanation. The proposed system leverages the background knowledge captured by large-scale
transformer-based language models. This paper also discusses various ways of input manipulation in
the architecture to improve the system’s performance on the downstream tasks. Our official submission
obtained an accuracy of 96% in subtask A and 94% in subtask B, both securing 4th position on the
leaderboard. Our system also generates the rationale given an unreasonable sentence with a 19.34 BLEU
score standing at 2nd rank on the leaderboard for subtask C. In future, we would like to train a joint model
by combining systems for subtask A and C. This will provide an additional reasonable statement against
the given unreasonable sentence to the system which can improve the reason generation capability.

Due to the limitation of language models in capturing external knowledge and their training being
restricted by the dataset, the systems lagged behind humans in generating coherent reasoning for an
unreasonable sentence. However, commonsense augmented systems can be incorporated in chatbots to
create a more sensible conversation with a user. Also, it can help in detecting satirical articles in online
news websites to combat the rising fake news problem.
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