@inproceedings{zhang-ren-2020-bertatde,
title = "{BERT}at{DE} at {S}em{E}val-2020 Task 6: Extracting Term-definition Pairs in Free Text Using Pre-trained Model",
author = "Zhang, Huihui and
Ren, Feiliang",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.90",
doi = "10.18653/v1/2020.semeval-1.90",
pages = "690--696",
abstract = "Definition extraction is an important task in Nature Language Processing, and it is used to identify the terms and definitions related to terms. The task contains sentence classification task (i.e., classify whether it contains definition) and sequence labeling task (i.e., find the boundary of terms and definitions). The paper describes our system BERTatDE1 in sentence classification task (subtask 1) and sequence labeling task (subtask 2) in the definition extraction (SemEval-2020 Task 6). We use BERT to solve the multi-domain problems including the uncertainty of term boundary that is, different areas have different ways to definite the domain related terms. We use BERT, BiLSTM and attention in subtask 1 and our best result achieved 79.71{\%} in F1 and the eighteenth place in subtask 1. For the subtask 2, we use BERT, BiLSTM and CRF to sequence labeling, and achieve 40.73{\%} in Macro-averaged F1.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-ren-2020-bertatde">
<titleInfo>
<title>BERTatDE at SemEval-2020 Task 6: Extracting Term-definition Pairs in Free Text Using Pre-trained Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Huihui</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Feiliang</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Definition extraction is an important task in Nature Language Processing, and it is used to identify the terms and definitions related to terms. The task contains sentence classification task (i.e., classify whether it contains definition) and sequence labeling task (i.e., find the boundary of terms and definitions). The paper describes our system BERTatDE1 in sentence classification task (subtask 1) and sequence labeling task (subtask 2) in the definition extraction (SemEval-2020 Task 6). We use BERT to solve the multi-domain problems including the uncertainty of term boundary that is, different areas have different ways to definite the domain related terms. We use BERT, BiLSTM and attention in subtask 1 and our best result achieved 79.71% in F1 and the eighteenth place in subtask 1. For the subtask 2, we use BERT, BiLSTM and CRF to sequence labeling, and achieve 40.73% in Macro-averaged F1.</abstract>
<identifier type="citekey">zhang-ren-2020-bertatde</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.90</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.90</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>690</start>
<end>696</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BERTatDE at SemEval-2020 Task 6: Extracting Term-definition Pairs in Free Text Using Pre-trained Model
%A Zhang, Huihui
%A Ren, Feiliang
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F zhang-ren-2020-bertatde
%X Definition extraction is an important task in Nature Language Processing, and it is used to identify the terms and definitions related to terms. The task contains sentence classification task (i.e., classify whether it contains definition) and sequence labeling task (i.e., find the boundary of terms and definitions). The paper describes our system BERTatDE1 in sentence classification task (subtask 1) and sequence labeling task (subtask 2) in the definition extraction (SemEval-2020 Task 6). We use BERT to solve the multi-domain problems including the uncertainty of term boundary that is, different areas have different ways to definite the domain related terms. We use BERT, BiLSTM and attention in subtask 1 and our best result achieved 79.71% in F1 and the eighteenth place in subtask 1. For the subtask 2, we use BERT, BiLSTM and CRF to sequence labeling, and achieve 40.73% in Macro-averaged F1.
%R 10.18653/v1/2020.semeval-1.90
%U https://aclanthology.org/2020.semeval-1.90
%U https://doi.org/10.18653/v1/2020.semeval-1.90
%P 690-696
Markdown (Informal)
[BERTatDE at SemEval-2020 Task 6: Extracting Term-definition Pairs in Free Text Using Pre-trained Model](https://aclanthology.org/2020.semeval-1.90) (Zhang & Ren, SemEval 2020)
ACL