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Abstract

This paper describes the submission by the
team from the Institute of Computational
Linguistics, Zurich University, to the Mul-
tilingual Grapheme-to-Phoneme Conversion
(G2P) Task of the SIGMORPHON 2020 chal-
lenge. The submission adapts our system from
the 2018 edition of the SIGMORPHON shared
task. Our system is a neural transducer that op-
erates over explicit edit actions and is trained
with imitation learning. It is well-suited for
morphological string transduction partly be-
cause it exploits the fact that the input and out-
put character alphabets overlap. The challenge
posed by G2P has been to adapt the model and
the training procedure to work with disjoint al-
phabets. We adapt the model to use substitu-
tion edits and train it with a weighted finite-
state transducer acting as the expert policy. An
ensemble of such models produces competi-
tive results on G2P. Our submission ranks sec-
ond out of 23 submissions by a total of nine
teams.

1 Introduction

G2P requires mapping a sequence of characters
in some language into a sequence of International
Phonetic Alphabet (IPA) symbols, which represent
the pronunciation of this input character sequence
in some abstract way (not necessarily phonemic,
despite the name of the task) (Figure 1).

Multilingual G2P is Task I of this year’s SIG-
MORPHON challenge. It features fifteen languages
from various phylogenetic families and written in
different scripts. We refer the reader to Gorman
et al. (2020) for an overview of the language data.
Each language comes with 3,600 training and 450
development set examples. It is permitted to use
external resources as well as to build a single mul-
tilingual model.

We participate in this shared task with an adapta-
tion of our SIGMORPHON 2018 system (Makarov

fathaigh 7→ /fa:/ (“giants”)
Irish of Cois Fhairrge (de Bhaldraithe, 1953)

Figure 1: Example of G2P.

and Clematide, 2018b), which was particularly suc-
cessful in type-level morphological inflection gen-
eration. Our system is a neural transducer that oper-
ates over explicit edit actions and is trained with im-
itation learning (Daumé III et al., 2009; Ross et al.,
2011; Chang et al., 2015, IL). It has a number of
useful inductive biases, one of which is the familiar
bias towards copying the input (implemented as the
traditional copy edit). This is particularly useful for
morphological string transduction problems, which
typically involve small and local edits and where
most of the input is preserved in the output. This
contrasts with models that rely purely on gener-
ating characters such as generic encoder-decoder
models, which as a result suffer, particularly on
smaller-sized datasets.

Copying requires that the input and output char-
acter alphabets overlap, preferably substantially.
This also allows our IL training to leverage a
simple-to-implement expert policy (which during
training provides demonstrations to the learner of
how to optimally solve the task). The optimal com-
pletion of the target given the prediction gener-
ated so far during training requires finding edits
that would extend the prediction so that the Lev-
enshtein distance (Levenshtein, 1966) between the
target and the partial prediction + the future suffix
is minimized. Unfortunately, this objective alone
would not discriminate between multiple edit ac-
tion sequences that relate the input and the partial
prediction + the future suffix. To address this spuri-
ous ambiguity, our IL training adds edit sequence
scores, computed using traditional costs,1 into the

1Copy costs zero, all other edits cost one.
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objective. This naturally encourages the system to
copy, however this would fail on any editing prob-
lem with disjoint alphabets.

G2P poses an interesting challenge for a sys-
tem like ours. On the one hand, G2P shares many
similarities with morphological string transduction:
The changes are mostly local, it would suffice to
perform traditional left-to-right transduction, and
a substantial part of the work is arguably applying
equivalence rules (e.g. the German letter “g” most
often converts to /g/, “a” to /a/ or /a:/), which is
similar to copying. Yet, a general solution to G2P
cannot rely on overlapping alphabets since many
scripts do not share many symbols, if any at all,
with IPA (e.g. Korean or Georgian).

Our solution adapts the model to use substitu-
tion edits and trains it with a weighted finite-state
transducer acting as the expert policy.

2 Model description

The underlying model is a neural transducer in-
troduced in Aharoni and Goldberg (2017). It de-
fines a conditional distribution over traditional edits
pθ(y,a | x) =

∏|a|
j=1 pθ(aj | a<j ,x), where x is

an input sequence of graphemes and a = a1 . . . a|a|
is an edit action sequence. (The output sequence
of IPA symbols y is deterministically computed
from x and a.) The model is equipped with a long
short-term memory (LSTM) decoder and a bidi-
rectional LSTM encoder (Graves and Schmidhu-
ber, 2005). The challenge is training this model:
Due to the recurrent decoder, it cannot be trained
with exact marginal likelihood unlike the more
familiar weighted finite-state transducer (Mohri,
2004; Eisner, 2002, WFST) or its neuralizations
(Yu et al., 2016). For a more detailed description
of the model, we refer the reader to Makarov and
Clematide (2018a).2

IL training Makarov and Clematide (2018a) pro-
pose training the model using IL, a general model
fitting framework for sequential problems over
exponentially sized output spaces. IL has been
applied successfully to natural language process-
ing (NLP) problems, e.g. transition-based parsing
(Goldberg and Nivre, 2012) and language genera-
tion (Welleck et al., 2019). IL relies on the availabil-
ity of demonstrations of how the task can optimally

2The model uses shared input character / action embed-
dings of size 100 and one-layer LSTMs with hidden-state size
200.

p(#)

Σ : ε / p(DEL(Σ)) ε : Ω / p(INS(Ω))

Σ : Ω / p(SUB(Σ, Ω))

Figure 2: Stochastic edit distance (Ristad and Yianilos,
1998): A memoryless probabilistic FST. Σ and Ω stand
for any input and output symbol, respectively.

be solved given any configuration. Due to the na-
ture of many NLP problems, such demonstrations
can often be provided by a rule-based program
(known as expert policy).

Makarov and Clematide (2018a) use a combina-
tion of Levenshtein distance and edit sequence cost
as the task objective (β ED(ŷ,y) + ED(x, ŷ), β ≥
1) and devise an expert policy for it. Given a tar-
get sequence y, a partially completed prediction
ŷ1:n, and the remaining input sequence xk:l, the
expert needs to (1) identify the set of target suffixes
yj:m that when appended to ŷ1:n, lead to a predic-
tion with minimum Levenshtein distance from the
target, and (2) check which of the edit sequences
producing those suffixes have the lowest cost, i.e.
minimum Levenshtein distance from the remaining
input.

The second part is crucial for training accurate
models especially in the limited resource setting,
as it reduces spurious ambiguity arising under the
first part of the objective alone. It is also the sec-
ond part of the training objective that hinges on
the overlap of the input and output alphabets, as
this permits minimization using the edit distance
dynamic program with traditional costs.

2.1 Adaptation to G2P

The adaptation is two-fold: First, we introduce sub-
stitution edits, which have previously not been em-
ployed to keep the total number of edit actions to a
minimum. For each output character c, there is now
a substitution action SUBS[c] which substitutes c
for any input character x.

When the alphabets are disjoint, the complet-
ing edit sequences cannot be very informatively
scored using traditional edit costs. For exam-
ple, for the data sample кит 7→ /kjit/ (Rus-
sian: “whale”), we would like the following most
natural edit sequence to attain the lowest cost:
SUBS[k], INS[j], SUBS[i], SUBS[t]. Yet, it is clear
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that under traditional costs, this sequence attains
the same cost as any other that consists of three
substitutions and one insertion. Our solution to this
is to learn costs from the training data to ensure an
intuitive ranking of edit sequences.

SED policy Learning costs as well as computing
string distance can be achieved with a very simple
WFST: Stochastic Edit Distance (Ristad and Yian-
ilos, 1998, SED), which is a probabilistic version
of Levenshtein distance (Fig. 2). We use traditional
multinomial parameterization.

Before starting training the neural transducer,
we train a SED model using the Expectation–
Maximization algorithm (Dempster et al., 1977).
We use the following update in the M-step:
θ(t+1) ∝ max(0, θ̃ + α), where θ̃ is the unnormal-
ized weight computed in the E-step and 0 < α < 1
is a sparse Dirichlet prior parameter associated with
this edit. This corresponds to sparse regularization
via Dirichlet prior (Johnson et al., 2007), which
results in many edits having zero probability. We
found this training to lead to more accurate SED
models. Furthermore, it dramatically reduces the
size of the edit action set that the neural transducer
is defined over.

SED is integrated into the expert policy. During
training, given a configuration consisting of a par-
tial prediction, a remainder of the input, and the
target, we query the expert policy for next optimal
edits. We minimize the first part of the objective
much like before, and we minimize the second part
by decoding SED with the Viterbi algorithm.

Suppose we transduce the French word x =
abject (“vile”) into the target y = a b Z E k t. Sup-
pose also that the neural transducer currently at-
tends to character x4 = e and the prediction built
so far during training is ŷ1:7 = a b Z e (note the
error). We query the SED policy to get the op-
timal edit action whose likelihood we will max-
imize. First, much like before, we find that the
following edits are optimal with respect to the
first term of the training objective (call them per-
missible) as they do not increase the Levenshtein
distance of the prediction from the target (as-
suming all subsequent edits are permissible too):
SUBS[E], INS[E], DEL, SUBS[ ], INS[ ]. (This can be
verified by looking at the Levenshtein distance pre-
fix matrix for strings ŷ1:7 and y.) Each such edit
starts a suffix that completes the target, e.g. it is “E k
t” for SUBS[E] and “ k t” for SUBS[ ]. Next, we use
SED to rank the permissible edits by cost-to-go. For

each of the edits and their corresponding suffixes,
the expert needs to execute the edit (e.g. SUBS[E]
writes E and moves the attention to x5 = c) and
then decode SED with Viterbi on the the remaining
input and the suffix (both possibly modified by the
edit). In this way, we obtain that SUBS[ ] is the op-
timal action with the lowest cost-to-go (=negative
sum of the log probabilities of the edit and of the
Viterbi path) of 15.28 (vs 17.65 for SUBS[E], 21.09
for INS[E], 17.31 for DEL, and 17.31 for INS[ ]).3

Exploration This time, we also train the trans-
ducer with an aggressive exploration schedule:
psampling(i) = 1

1+exp(i) , where i is the training
epoch number. After a couple of training epochs,
training configurations are generated entirely by
executing edit actions sampled from the model.

3 Submission details

We train separate models for each language on the
official training data and use the development set
for model selection.4 Our submission does not use
any additional lexical resources.

For most of the models, we employ Unicode
decomposition normalization (NFKD)5 as a data
preprocessing step. Importantly, this helps decom-
posing Unicode syllable blocks used e.g. in Hangul.

The size of the development set is rather small
(450 examples), and having examined the data, we
suspect that overly relying on the development set
for model selection might hurt generalization. For
example, the French development set contains three
exceptions to the “ill”–/j/ equivalence; thus, a sin-
gle model that achieves a high score on the devel-
opment set might, in fact, be overfitting. To counter
this, we build an eleven-model–strong majority-
vote ensemble. Fortunately, training a neural trans-
ducer is fast as one epoch takes just about four
minutes on average on a single CPU, due to the
relatively small number of model parameters.

3This particular SED is trained on the French training data
for 3 EM epochs with Dirichlet prior α = 1e-05 for all edits.

4We train the SED model for 20 epochs of EM with α =
0.25 for insertions and 0.5 for all other edits. We train the
neural transducer for a maximum of 60 epochs with a patience
of 12 epochs. We use mini-batches of size 5. We decode using
beam search with beam width 4.

5Using NFKD instead of NFD was a bit unfortunate be-
cause some superscript diacritics get normalized to their regu-
lar size. Luckily, as pointed out to us by Kyle Gorman, there is
a unique mapping from NFKD to NFC for the spaced output
format of this task. See http://www.unicode.org/reports/tr15/
for Unicode normalization forms.

http://www.unicode.org/reports/tr15/
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CLUZH ENS. CLUZH WER AVG LSTM TF BEST BY OTHERS

LNG WER PER #C #D WER ± ∆,% ⊥ WER WER WER ∆,% PER ∆,%

ady 27.11 6.27 0 11 30.32 1.97 -12 16.89 28.00 28.44 24.67 9 5.76 8
arm 12.22 2.82 0 11 14.73 0.76 -21 8.89 14.67 14.22 12.67 -4 2.91 -3
bul 23.33 4.70 0 11 30.81 2.78 -32 13.78 31.11 34.00 22.22 5 4.70 0
dut 14.44 2.51 9 2 18.30 1.44 -27 9.33 16.44 15.78 13.56 6 2.36 6
fre 6.89 1.56 2 9 8.12 0.54 -18 3.56 6.22 6.89 5.11 26 1.16 26
geo 27.33 4.83 0 11 29.11 0.86 -7 8.89 26.44 28.00 24.89 9 4.57 5
gre 16.44 2.68 11 0 19.60 1.80 -19 7.33 18.89 18.89 14.44 12 2.42 10
hin 5.11 1.20 0 11 7.13 0.55 -40 2.67 6.67 9.56 5.11 0 1.20 0
hun 4.00 1.02 0 11 4.77 0.60 -19 2.89 5.33 5.33 4.00 0 0.92 10
ice 9.11 1.90 0 11 10.00 0.53 -10 5.78 10.00 10.22 9.11 0 1.83 4
jpn 6.00 1.58 0 11 7.19 0.30 -20 4.89 7.56 7.33 4.89 19 1.16 27
kor 28.44 4.88 0 11 28.26 1.39 1 11.78 46.89 43.78 24.00 16 4.05 17
lit 18.67 3.27 0 11 21.54 0.82 -15 14.22 19.11 20.67 18.67 0 3.38 -3
rum 11.33 2.68 0 11 13.66 1.11 -21 7.11 10.67 12.00 9.78 14 2.23 17
vie 1.56 0.35 0 11 1.60 0.21 -2 0.89 4.67 7.56 0.89 43 0.27 23
AVG 14.13 2.82 1.5 9.5 16.34 1.05 -16 7.93 16.84 17.51 12.93 8 2.59 8

Table 1: Overview of the test results. ∆ gives relative error difference compared to our submission CLUZH.
#C=number of NFC models in the ensemble. #D=number of NFKD models in the ensemble. CLUZH WER
AVG=average WER, standard deviation, and relative error difference of the average computed over individual mod-
els.⊥=lower-bound on WER: correct if predicted by any individual model. LSTM=official seq2seq LSTM baseline.
TF=official seq2seq Transformer baseline. BEST BY OTHERS=best results of other systems for each language.

4 Results and Discussion

Our system ranks second among 23 submissions
by a total of nine teams (Table 1). It ties for first
place on four languages (Hindi, Hungarian, Ice-
landic, Lithuanian) and outperforms every other
submission for Armenian. It achieves strong gains
over the neural baselines.

Ensembling gains us 16% in error reduction com-
pared to test set averages—a substantial improve-
ment. We leave it for future work to see whether
dropout and a larger model size could be used in-
stead as effectively as ensembling. Unicode decom-
position normalization boosts the performance of
our Korean models.6 On average, at least one model
predicts the output correctly for all but 7.93% of
all the words (⊥)—Adyghe, Lithuanian, and Bul-
garian being the most difficult languages. For some
languages, WER standard deviation is high, likely
confirming our hypothesis that model selection on
the small-sized development set would lead to poor
generalization.

Error analysis Table 2 shows the most frequent
errors of our system for each language and helps to

6In fact, in a post-submission analysis, we see a strong gain
from decomposition only for Korean (17 percentage points
on average). For the other languages, it has no impact on
performance on average.

qualitatively assess their strongly varying error pro-
files. We take a closer look at the errors in French
and Korean. Additional lexical information could
improve our French models. E.g. the word’s lexical
category feature and/or morphological segmenta-
tion would probably help correctly transduce the
word-final “-ent” (adverb “vraiement” (truly) /...Ã/
vs verb “viennent” (they come), where the ending
is silent). Many errors in French are in English
borrowings.

We look in some detail at the errors on the Ko-
rean test data that all or almost all of the individ-
ual models of the ensemble make. As expected,
lexicalized phenomena contribute most of the er-
rors: vowel length (which is neither phonemic nor
phonetically realized in the speech of all except
elderly speakers (Sohn, 2001)) and tensification.
Vowel length is not indicated in Korean orthogra-
phy, and neither is tensification (with some excep-
tions). Knowing whether a word is an English bor-
rowing (e.g.섹스 seksŭ7 (sex)) or whether a word
is a compound and where the morpheme bound-
ary lies (초승달 ch’osŭng-tal (new moon)) could
help predict non-automatic tensification correctly
in a small number of cases ([s

""
eflks

""
W] vs ∗[sh...] and

[
>
t Chofls

hWNt
""
aí] vs ∗[...daí]).

7This uses McCune-Reischauer transliteration of Korean.
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ady ʼ/ϵ/17 ə•/ϵ/9 ʃ/ʂ/8 ϵ/•ə/7 j•/ϵ/6 ϵ/ʼ/6 ϵ/ə•/5 ɮ/l/5 ː/ϵ/5 a/ə/5
arm ɔ/o/17 ϵ/ə•/12 ◌͡/•/12 ə•/ϵ/3 t/d/3 ɡ/kʰ/2 ʃʰ/ʒ/2 ɛ/j/2 χ/ʁ/2 t͡ʃ/d•ʒ/1
bul r/ɾ/26 o/ɔ/22 ə/a/14 a/ə/12 ◌/̪ϵ/9 ϵ/◌/̪9 a/ɐ/7 ɫ/l/5 ɐ/ə/5 ϵ/ʲ/5
dut ə/ɛ/9 ϵ/j•/4 aː/ɑ/4 eː/ə/4 ə/eː/3 t/d/3 ː/ϵ/3 oː/ɔ/2 ϵ/ɛ•/2 n/m/2
fre ϵ/•ɑ̃/2 ϵ/•s/2 a/ɑ/2 o/ɔ/2 w/ɔ/2 •j•ɑ̃/ϵ/1 ϵ/•k•s/1 ɔ•p/o/1 •ɑ̃/ϵ/1 e/ɛ•ʁ/1
geo ɪ/i/103 i/ɪ/48 χ/x/5 ɣ/ʁ/4 ʁ/ɣ/3 x/χ/3 ɑ/a/2 •s/ϵ/1
gre ɾ/r/27 o/ɔ/19 r/ɾ/15 e/ɛ/9 ʝ/i/3 n•/ϵ/2 ç/i/2 m/ɱ/2 •m•e/ϵ/1 ϵ/s•/1
hin ϵ/ə•/10 ə•/ϵ/5 ϵ/•ə/2 ɛː/ə/2 ϵ/‿•/2 ɑ/a/2 ɪ/iː/1 •ɦ/ʱ/1 ɪ/i/1 ə/j/1
hun ʃ/ʒ/3 ϵ/ː/3 eː/i•n•t/1 ϵ/ɱ•v•/1 m/eːʲ/1 t͡s/xː/1 sː/ʃ•s/1 h•/ϵ/1 •h/◌͡ʃ/1 ◌͡/•/1
ice ː/ϵ/11 ϵ/ː/9 t•/ϵ/4 v/f/3 ϵ/◌/̥3 t/d/2 ʰ/ϵ/2 ϵ/ʰ/2 ʏ•ʏ/uː/1 cʰ/k/1
jpn ϵ/◌/̊8 ϵ/◌/̥6 ϵ/ː/3 ː/•ɯ̟ᵝ/2 ː/•o̞/2 ɯ̟ᵝ/j•o̞/1 ϵ/•e/̞1 ɯ̟ᵝ/e/̞1 o̞ː/ã/̠1 s•ɨ/ɯ̟̃/1
kor ϵ/ː/72 ː/ϵ/18 ɘː/ʌ/̹11 ʑ/ɕ/͈4 ʌ/̹ɘː/4 d/t/4 ɡ/k/͈3 ϵ/ɲ•/3 d/t/͈2 ɭ/n/2
lit ϵ/◌/̪15 n/ŋ/14 ɐ/aː/12 ː/ϵ/8 ʲ/ϵ/7 o/ɔ/7 ϵ/ː/6 ϵ/ʲ/5 ɛ/æː/3 aː/ɐ/3
rum ◌͡/•/8 •/◌͡/8 e/̯j/6 r/ɾ/5 ʲ/•i/4 ː/•j/3 i/j/3 ϵ/e•/2 o/e/2 j/i/2
vie ϵ/ː/2 ˧˧ ˧•/ϵ/1 ϵ/e•/1 w•/ϵ/1 ̚•/ϵ/1 ◌͡m/ϵ/1 ə/e/1 ʔ/n/1 ˦/ϵ/1 a/ɔ/1

1

Table 2: Ten most frequent errors per language. Notation: prediction / gold / error frequency. • denotes whitespace.
Computed using the UTF-8 aware version of the ISRI Analytic Tools for OCR Evaluation.8

How good is SED policy? Somewhat surpris-
ingly, using SED as part of the expert policy results
in competitive performance. Yet, SED is a very
crude model (e.g. because of the lack of context,
when used as a conditional model, SED assigns
less probability to any edit sequence containing
insertions than the same sequence but with all the
insertions removed; this e.g. makes it unusable as a
standalone model for G2P). On top of this, we also
do not use learned roll-out, which would be recom-
mended when training with a sub-optimal expert
(Chang et al., 2015). We leave it for future work
to examine whether the neural transducer’s perfor-
mance on G2P would improve from replacing SED
with a more powerful model.

5 Conclusion

This presents the approach taken by the CLUZH
team to solving the SIGMORPHON 2020 Multi-
lingual Grapheme-to-Morpheme Conversion chal-
lenge. Our submission is based on our successful
SIGMORPHON 2018 system, which is a majority-
vote ensemble of neural transducers trained with
imitation learning. We adapt the 2018 system to
work on transduction problems with disjoint input
and output alphabets. We add substitution actions
(not available in previous versions of the system)
and employ a memoryless probabilistic finite-state
transducer to define the expert policy for the imi-
tation learning. We use majority-vote ensembling
to counter the overfitting to the small development
sets. These simple modifications result in a highly

8https://github.com/eddieantonio/ocreval

competitive performance even without the use of
any exernal resources or learning a single multi-
lingual model. Our ensemble ranks second out of
23 submissions by a total of nine teams. Our error
analysis indicates that addressing many of the er-
rors requires additional information such as know-
ing the word’s lexical category, morphological seg-
mentation, or etymology. We will make our code
publicly available.
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Hal Daumé III, John Langford, and Daniel Marcu.
2009. Search-based structured prediction. Machine
learning.

https://github.com/eddieantonio/ocreval


176

Arthur P Dempster, Nan M Laird, and Donald B Rubin.
1977. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statisti-
cal Society: Series B (Methodological), 39(1).

Jason Eisner. 2002. Parameter estimation for proba-
bilistic finite-state transducers. In ACL.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic or-
acle for arc-eager dependency parsing. In COLING.

Kyle Gorman, Lucas F.E. Ashby, Aaron Goyzueta,
Arya D. McCarthy, Shijie Wu, and Daniel You. 2020.
The SIGMORPHON 2020 shared task on multilin-
gual grapheme-to-phoneme conversion. In Proceed-
ings of the 17th SIGMORPHON Workshop on Com-
putational Research in Phonetics, Phonology, and
Morphology.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional
LSTM and other neural network architectures. Neu-
ral Networks, 18(5).

Mark Johnson, Thomas L Griffiths, and Sharon Gold-
water. 2007. Bayesian inference for PCFGs via
Markov Chain Monte Carlo. In NAACL-HLT.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. So-
viet physics doklady, 10(8).

Peter Makarov and Simon Clematide. 2018a. Imita-
tion learning for neural morphological string trans-
duction. In EMNLP.

Peter Makarov and Simon Clematide. 2018b. UZH at
CoNLL-SIGMORPHON 2018 shared task on uni-
versal morphological reinflection. Proceedings of
the CoNLL SIGMORPHON 2018 Shared Task: Uni-
versal Morphological Reinflection.

Mehryar Mohri. 2004. Weighted finite-state transducer
algorithms. An overview. In Formal Languages and
Applications, volume 148 of Studies in Fuzziness
and Soft Computing. Springer Berlin Heidelberg.

Eric Sven Ristad and Peter N Yianilos. 1998. Learning
string-edit distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence.
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